Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Chemosphere ; 334: 139037, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37244559

ABSTRACT

Palm oil fuel ash (POFA) has limited use as a fertilizer, while contribute effectively to the environmental contamination and health risks. Petroleum sludge poses a serious effect on the ecological environment and human health. The present work aimed to present a novel encapsulation process with POFA binder for treating petroleum sludge. Among 16 polycyclic aromatic hydrocarbons, four compounds were selected for the optimization of encapsulation process due to their high risk as carcinogenic substrates. Percentage PS (10-50%) and curing days (7-28 days) factors were used in the optimization process. The leaching test of PAHs was assessed using a GC-MS. The best operating parameters to minimize PAHs leaching from solidified cubes with OPC and10% POFA were recorded with 10% PS and after 28 days, at which PAH leaching was 4.255 and 0.388 ppm with R2 is 0.90%. Sensitivity analysis of the actual and predicted results for both the control and the test (OPC and 10% POFA) revealed that the actual results of the 10% POFA experiments have a high consistency with the predicted data (R2 0.9881) while R2 in the cement experiments was 0.8009. These differences were explained based on the responses of PAH leaching toward percentage of PS and days of cure. In the OPC encapsulation process, the main role was belonged to PS% (94.22%), while with 10% POFA, PS% contributed by 32.36 and cure day contributed by 66.91%.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Humans , Sewage/chemistry , Palm Oil , Polycyclic Aromatic Hydrocarbons/analysis , Environmental Pollution
2.
Environ Res ; 215(Pt 1): 114180, 2022 12.
Article in English | MEDLINE | ID: mdl-36057335

ABSTRACT

In the present study, surface-active compounds (SAC) were extracted from biosolids using an alkaline treatment process. They were tested for their remediation efficiency of crude oil-contaminated sediment soil and was compared with Triton x-100. The SAC exhibited a similar soil washing efficiency to that of the commercial Triton x-100, and under the optimized soil washing parameters, SAC exhibited a maximum of 91% total polycyclic aromatic hydrocarbons removal. Further, on analysing the toxicity of the soil residue after washing, it was observed that SAC from biosolids washed soil exhibited an average of 1.5-fold lesser toxicity compared to that of Triton x-100 on different test models-earthworm, a monocot, and dicot plants. The analysis of the key soil parameters revealed that the commercial surfactant reduced the soil organic matter and porosity by an average of 1.3-fold compared to SAC. Further, the ability of surfactants to induce toxicity was confirmed by the adsorption of the surfactants on the surface of the soil particles which was in the order of Triton x-100 > SAC. Thus, this study suggests that SAC can be applied as an effective bioremediation approach for contaminated soil for a greener and sustainable ecosystem.


Subject(s)
Petroleum , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Biosolids , Ecosystem , Octoxynol , Petroleum/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil , Soil Pollutants/analysis , Surface-Active Agents/analysis
3.
Environ Res ; 214(Pt 2): 113958, 2022 11.
Article in English | MEDLINE | ID: mdl-35921904

ABSTRACT

Brackish lake systems and estuaries are unique aquatic systems that support diversified life forms and strongly influence a region's economy. Major chemical water quality parameters of India's second-largest brackish water lake, Pulicat were assessed. Physico-chemical parameters like pH, temperature, suspended solid concentrates, total dissolved solids, salinity, nitrogenous nutrients, phosphate, silicate, and chlorophyll a were analysed. The results obtained for different parameters were compared and interpreted with statistical software SPSS version 20 and images were plotted using the Arc GIS spatial analyst tool. During the summer months, the nitrogen to phosphorus ratio ranges from a minimum of 1.96 to a maximum of 16.64 (9.55 ± 4.01) while it ranges from a minimum of 7.98 to a maximum of 15.52 (12.47 ± 2) during the pre-monsoon. In the monsoon season, the nitrogen to phosphorus ratio of surface water suggests a range from a minimum of 8.64 to a maximum of 17.58 (13.87 ± 2.14). During the post-monsoon season, the nitrogen to phosphorus ratio ranges from 4.98 to 17.34 (11.77 ± 3.68). The average nitrogen to phosphorus ratios were 9.6, 12.5, 13.9 and 11.8 in summer, pre-monsoon, monsoon, and post-monsoon respectively. The nitrogen to phosphorus ratio was lower than the Redfield ratio for all the seasons. The average concentration of chlorophyll a was 14.9, 13.4, 12.8 and 11.8 in summer, pre-monsoon, monsoon, and post-monsoon respectively. As per the Pearson Correlation Coefficient, there was no significant correlation among nitrogen, phosphorus, and chlorophyll a. This suggests the influence of suspended solid concentrates, and nitrogen and phosphorus flux in the sediment-water interface might be interfering with the nutrient cycles and primary productivity.


Subject(s)
Lakes , Water Pollutants, Chemical , Asia , Chlorophyll A/analysis , Environmental Monitoring , Lakes/analysis , Nitrogen/analysis , Phosphorus/analysis , Saline Waters , Seasons , Water Pollutants, Chemical/analysis
4.
Chemosphere ; 306: 135474, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35760139

ABSTRACT

Green synthesis has emerged as a sustainable approach for the fabrication of nanomaterials in the last few decades. Leaf extracts have been considered low-cost and highly efficient reactants for the synthesis of nanoparticles. In this study, an aqueous extract of Cleistocalyx operculatus leaves was employed as a reductant to synthesize Ag/TiO2 nanocomposites. The morphology, structure, and interface interaction of the Ag/TiO2 nanocomposites were investigated by (i) X-ray diffraction (XRD) to determine the crystallinity, (ii) scanning electron microscopy (SEM) to determine the morphologies, (iii) energy dispersive X-ray spectroscopy (EDX) to determine the elemental composition and distribution, and (iv) diffuse reflectance spectroscopy (DRS) to understand the optical properties. The results showed that Ag nanoparticles (AgNPs) with particle sizes of 20-40 nm homogeneously covered the surface of the TiO2 nanoparticles. The green-synthesized Ag/TiO2 nanocomposite also exhibited an excellent photodegradation ability for Rhodamine B with a removal percentage up to 91.4% after 180 min of photocatalytic reaction.


Subject(s)
Metal Nanoparticles , Nanocomposites , Syzygium , Catalysis , Coloring Agents , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Plant Extracts/chemistry , Silver/chemistry , Titanium/chemistry
5.
Chemosphere ; 291(Pt 2): 132676, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34718020

ABSTRACT

The microbial infections due to biofilm forming bacterial pathogens are very common in human subjects. The intensive application of antibiotics in integrated disease management strategy has led to increased multidrug resistance incommon pathogens. Thus, indicating need of developing an alternative method for the control of these multidrug resistant pathogens. Present study involves the Moringa oleifera aqueous extract mediated biological synthesis of silver (Ag nanoparticles (NPs)- Avg. size 82.5 nm; zeta potential = -27.9 mV), copper oxide (CuONPs- Avg. size 61 nm; zeta potential = -19.3 mV), iron oxide (FeONPs- Avg. size 83.3 nm; zeta potential = -9.37 mV) and alumina (AlONPs- Avg. size 87.3 nm; zeta potential = -10.9 mV) nanoparticles. Biological nanoparticles were detected by visual observation, spectrophotometric detection followed by zeta potential analysis, nanoparticle tracking analysis, Fourier transform infrared spectrometry and X-ray diffraction analysis. Nanoparticles were further evaluated for their in vitro antimicrobial potential, membrane damage effectiveness, biofilm inhibition activity by MTT assay. Nanoparticles were assessed against human pathogens viz. two Gram-positive (Bacillus subtilis MTCC 441 and Staphylococcus haemolyticus MTCC 3383) and two Gram-negative bacteria (Enterobacter aerogenes MTCC 111 and Salmonella enterica ser. Typhi MTCC 8767). The nanoparticles exhibited akin activity pattern against all pathogens studied i.e. AgNPs > CuONPs > AlONPs > FeONPs. Tested nanoparticles registered lower MIC values and more intensified growth inhibition against Gram-negative bacteria compared to their Gram-positive counterparts. These results pointed out that the M. oleifera mediated nanoparticles can be prospectivelyutilized in the development of alternative antimicrobials against diverse bacterial infections.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Bacteria , Humans , Microbial Sensitivity Tests , Plant Extracts , Silver , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL