Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Arch Toxicol ; 94(7): 2505-2516, 2020 07.
Article in English | MEDLINE | ID: mdl-32296860

ABSTRACT

The use of new psychoactive substances (NPSs) as a substitute for illegal drugs is increasing rapidly and is a serious threat to public health. 25C-NBF is a newly synthesized phenethylamine-type NPS that acts as a 5-hydroxyindoleacetic acid (5-HT) receptor agonist, but little is known about its pharmacological effects. Considering that NPSs have caused unexpected harmful effects leading to emergency and even death, scientific confirmation of the potential adverse effects of 25C-NBF is essential. In the present study, we investigated whether 25C-NBF has addictive and neurotoxic potential and causes neurochemical changes. In addictive potential assessments, high conditioned place preference (CPP) scores and stable self-administration (SA) were observed in the 25C-NBF groups (CPP [3 mg kg-1]; SA [0.01, 0.03, 0.1 mg kg-1]), suggesting the addictive liability of 25C-NBF. In neurotoxic potential assessments, 25C-NBF treatment (single super-high dose [1 × 15, 30, 40 mg kg-1]; repeated high dose [4 × 8, 15, 30 mg kg-1]) resulted in reduced motor activity (open field test), abnormal motor coordination (rota-rod test) and impaired recognition memory (novel object recognition test), suggesting that 25C-NBF is neurotoxic leading to motor impairment and memory deficits. Subsequently, immunohistochemistry showed that 25C-NBF treatment decreased tyrosine hydroxylase (TH) expression and increased ionized calcium-binding adapter molecule 1 (Iba-1) expression in the striatum. Taken together, our results clearly demonstrate the dangers of recreational use of 25C-NBF, and we suggest that people stop using 25C-NBF and other NPSs whose pharmacological effects are not precisely known.


Subject(s)
Behavior, Addictive/chemically induced , Behavior, Animal/drug effects , Brain/drug effects , Neurotoxicity Syndromes/etiology , Phenethylamines/toxicity , Psychotropic Drugs/toxicity , Substance-Related Disorders/etiology , Animals , Behavior, Addictive/metabolism , Behavior, Addictive/psychology , Brain/metabolism , Brain/physiopathology , Calcium-Binding Proteins/metabolism , Conditioning, Psychological/drug effects , Glial Fibrillary Acidic Protein/metabolism , Locomotion/drug effects , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Microfilament Proteins/metabolism , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/physiopathology , Open Field Test/drug effects , Rats, Sprague-Dawley , Rotarod Performance Test , Substance-Related Disorders/metabolism , Substance-Related Disorders/psychology , Tyrosine 3-Monooxygenase/metabolism
2.
Planta Med ; 85(17): 1363-1373, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31618776

ABSTRACT

Lespedeza bicolor, a traditional herbal medicine widely used in Australia, North America, and Eastern Asia, has various therapeutic effects on inflammation, nephritis, hyperpigmentation, and diuresis. In this study, to evaluate the effects of L. bicolor on cognitive function, we examined whether L. bicolor improved amyloid beta-induced memory impairment and assessed the possible mechanisms in mice. Catechin, rutin, daidzein, luteolin, naringenin, and genistein were identified in the powdered extract of L. bicolor by HPCL-DAD analyses. In behavioral experiments, L. bicolor (25 and 50 mg/kg, p. o.) significantly improved amyloid beta25 - 35 (6 nmol, intracerebroventricular)-induced cognitive dysfunction in the Y-maze, novel recognition, and passive avoidance tests. Our molecular studies showed L. bicolor (25 and 50 mg/kg, p. o.) significantly recovered the reduced glutathione content as well as increased thiobarbituric acid reactive substance and acetylcholinesterase activities in the hippocampus. Furthermore, we found that L. bicolor significantly increased the expression of brain-derived neurotrophic factor, and phospho-Akt, extracellular signal-regulated kinase, and cAMP response element binding caused by amyloid beta25 - 35 in the hippocampus. In conclusion, L. bicolor exerts a potent memory-enhancing effect on cognitive dysfunction induced by amyloid beta25 - 35 in mice.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Lespedeza/chemistry , Memory Disorders/drug therapy , Plant Extracts/therapeutic use , Amyloid beta-Peptides , Animals , Cognition/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , MAP Kinase Signaling System/drug effects , Male , Memory Disorders/chemically induced , Mice , Peptide Fragments , Signal Transduction/drug effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL