Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Brain Res ; 1808: 148338, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36966959

ABSTRACT

Successive traumatic brain injuries (TBIs) exacerbate neuroinflammation and oxidative stress. No therapeutics exist for populations at high risk of repetitive mild TBIs (rmTBIs). We explored the preventative therapeutic effects of Immunocal®, a cysteine-rich whey protein supplement and glutathione (GSH) precursor, following rmTBI and repetitive mild-moderate TBI (rmmTBI). Populations that suffer rmTBIs largely go undiagnosed and untreated; therefore, we first examined the potential therapeutic effect of Immunocal® long-term following rmTBI. Mice were treated with Immunocal® prior to, during, and following rmTBI induced by controlled cortical impact until analysis at 2 weeks, 2 months, and 6 months following the last rmTBI. Astrogliosis and microgliosis were measured in cortex at each time point and edema and macrophage infiltration by MRI were analyzed at 2 months post-rmTBI. Immunocal® significantly reduced astrogliosis at 2 weeks and 2 months post-rmTBI. Macrophage activation was observed at 2 months post-rmTBI but Immunocal® had no significant effect on this endpoint. We did not observe significant microgliosis or edema after rmTBI. The dosing regimen was repeated in mice subjected to rmmTBI; however, using this experimental paradigm, we examined the preventative therapeutic effects of Immunocal® at a much earlier timepoint because populations that suffer more severe rmmTBIs are more likely to receive acute diagnosis and treatment. Increases in astrogliosis, microgliosis, and serum neurofilament light (NfL), as well as reductions in the GSH:GSSG ratio, were observed 72 h post-rmmTBI. Immunocal® only significantly reduced microgliosis after rmmTBI. In summary, we report that astrogliosis persists for 2 months post-rmTBI and that inflammation, neuronal damage, and altered redox homeostasis present acutely following rmmTBI. Immunocal® significantly limited gliosis in these models; however, its neuroprotection was partially overwhelmed by repetitive injury. Treatments that modulate distinct aspects of TBI pathophysiology, used in combination with GSH precursors like Immunocal®, may show more protection in these repetitive TBI models.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Mice , Animals , Gliosis , Brain Injuries, Traumatic/complications , Glutathione/metabolism , Dietary Supplements , Disease Models, Animal
2.
Mol Pharm ; 16(10): 4274-4281, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31556296

ABSTRACT

Feraheme (ferumoxytol), a negatively charged, carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticle (USPIO, 30 nm, -16 mV), is clinically approved as an iron supplement and is used off-label for magnetic resonance imaging (MRI) of macrophage-rich lesions, but the mechanism of recognition is not known. We investigated mechanisms of uptake of Feraheme by various types of macrophages in vitro and in vivo. The uptake by mouse peritoneal macrophages was not inhibited in complement-deficient serum. In contrast, the uptake of larger and less charged SPIO nanoworms (60 nm, -5 mV; 120 nm, -5 mV, respectively) was completely inhibited in complement deficient serum, which could be attributed to more C3 molecules bound per nanoparticle than Feraheme. The uptake of Feraheme in vitro was blocked by scavenger receptor (SR) inhibitor polyinosinic acid (PIA) and by antibody against scavenger receptor type A I/II (SR-AI/II). Antibodies against other SRs including MARCO, CD14, SR-BI, and CD11b had no effect on Feraheme uptake. Intraperitoneally administered PIA inhibited the peritoneal macrophage uptake of Feraheme in vivo. Nonmacrophage cells transfected with SR-AI plasmid efficiently internalized Feraheme but not noncharged ultrasmall SPIO of the same size (26 nm, -6 mV), suggesting that the anionic carboxymethyl groups of Feraheme are responsible for the SR-AI recognition. The uptake by nondifferentiated bone marrow derived macrophages (BMDM) and by BMDM differentiated into M1 (proinflammatory) and M2 (anti-inflammatory) types was efficiently inhibited by PIA and anti-SR-AI/II antibody. Interestingly, all BMDM types expressed similar levels of SR-AI/II. In conclusion, Feraheme is efficiently recognized via SR-AI/II but not via complement by different macrophage types. The recognition by the common phagocytic receptor has implications for specificity of imaging of macrophage subtypes.


Subject(s)
Ferrosoferric Oxide/metabolism , Inflammation Mediators/metabolism , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages/immunology , Macrophages/metabolism , Scavenger Receptors, Class A/metabolism , Animals , Cells, Cultured , Female , Hematinics/metabolism , Male , Mice , Mice, Inbred BALB C
3.
Free Radic Biol Med ; 124: 328-341, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29940352

ABSTRACT

Traumatic brain injury (TBI) is a major public health problem estimated to affect nearly 1.7 million people in the United States annually. Due to the often debilitating effects of TBI, novel preventative agents are highly desirable for at risk populations. Here, we tested a whey protein supplement, Immunocal®, for its potential to enhance resilience to TBI. Immunocal® is a non-denatured whey protein preparation which has been shown to act as a cysteine delivery system to increase levels of the essential antioxidant glutathione (GSH). Twice daily oral supplementation of CD1 mice with Immunocal® for 28 days prior to receiving a moderate TBI prevented an ~ 25% reduction in brain GSH/GSSG observed in untreated TBI mice. Immunocal® had no significant effect on the primary mechanical injury induced by TBI, as assessed by MRI, changes in Tau phosphorylation, and righting reflex time or apnea. However, pre-injury supplementation with Immunocal® resulted in statistically significant improvements in motor function (beam walk and rotarod) and cognitive function (Barnes maze). We also observed a significant preservation of corpus callosum width (axonal myelination), a significant decrease in degenerating neurons, a reduction in Iba1 (microglial marker), decreased lipid peroxidation, and preservation of brain-derived neurotrophic factor (BDNF) in the brains of Immunocal®-pretreated mice compared to untreated TBI mice. Taken together, these data indicate that pre-injury supplementation with Immunocal® significantly enhances the resilience to TBI induced by a moderate closed head injury in mice. We conclude that Immunocal® may hold significant promise as a preventative agent for TBI, particularly in certain high risk populations such as athletes and military personnel.


Subject(s)
Brain Injuries, Traumatic/pathology , Brain/pathology , Dietary Supplements , Neuroprotective Agents/pharmacology , Whey Proteins/pharmacology , Animals , Brain/metabolism , Brain Injuries, Traumatic/metabolism , Cysteine , Disease Models, Animal , Glutathione/metabolism , Male , Mice , Recovery of Function
4.
Haematologica ; 102(12): 1985-1994, 2017 12.
Article in English | MEDLINE | ID: mdl-28883079

ABSTRACT

While dietary folate deficiency is associated with increased risk for birth defects and other diseases, evidence suggests that supplementation with folic acid can contribute to predisposition to some diseases, including immune dysfunction and cancer. Herein, we show that diets supplemented with folic acid both below and above the recommended levels led to significantly altered metabolism in multiple tissues in mice. Surprisingly, both low and excessive dietary folate induced similar metabolic changes, which were particularly evident for nucleotide biosynthetic pathways in B-progenitor cells. Diet-induced metabolic changes in these cells partially phenocopied those observed in mice treated with anti-folate drugs, suggesting that both deficiency and excessive levels of dietary folic acid compromise folate-dependent biosynthetic pathways. Both folate deficiency and excessive dietary folate levels compromise hematopoiesis, resulting in defective cell cycle progression, persistent DNA damage, and impaired production of lymphocytes. These defects reduce the reconstitution potential in transplantation settings and increase radiation-induced mortality. We conclude that excessive folic acid supplementation can metabolically mimic dietary folate insufficiency, leading to similar functional impairment of hematopoiesis.


Subject(s)
Dietary Supplements/adverse effects , Folic Acid Deficiency/metabolism , Folic Acid/pharmacology , Hematopoiesis/drug effects , Animals , Folic Acid/metabolism , Folic Acid/therapeutic use , Metabolism/drug effects , Mice , Nucleotides/biosynthesis , Precursor Cells, B-Lymphoid/drug effects , Precursor Cells, B-Lymphoid/metabolism
5.
Clin Cancer Res ; 21(6): 1360-72, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25547679

ABSTRACT

PURPOSE: Although tyrosine kinase inhibitors (TKI) can be effective therapies for leukemia, they fail to fully eliminate leukemic cells and achieve durable remissions for many patients with advanced BCR-ABL(+) leukemias or acute myelogenous leukemia (AML). Through a large-scale synthetic lethal RNAi screen, we identified pyruvate dehydrogenase, the limiting enzyme for pyruvate entry into the mitochondrial tricarboxylic acid cycle, as critical for the survival of chronic myelogenous leukemia (CML) cells upon BCR-ABL inhibition. Here, we examined the role of mitochondrial metabolism in the survival of Ph(+) leukemia and AML upon TK inhibition. EXPERIMENTAL DESIGN: Ph(+) cancer cell lines, AML cell lines, leukemia xenografts, cord blood, and patient samples were examined. RESULTS: We showed that the mitochondrial ATP-synthase inhibitor oligomycin-A greatly sensitized leukemia cells to TKI in vitro. Surprisingly, oligomycin-A sensitized leukemia cells to BCR-ABL inhibition at concentrations of 100- to 1,000-fold below those required for inhibition of respiration. Oligomycin-A treatment rapidly led to mitochondrial membrane depolarization and reduced ATP levels, and promoted superoxide production and leukemia cell apoptosis when combined with TKI. Importantly, oligomycin-A enhanced elimination of BCR-ABL(+) leukemia cells by TKI in a mouse model and in primary blast crisis CML samples. Moreover, oligomycin-A also greatly potentiated the elimination of FLT3-dependent AML cells when combined with an FLT3 TKI, both in vitro and in vivo. CONCLUSIONS: TKI therapy in leukemia cells creates a novel metabolic state that is highly sensitive to particular mitochondrial perturbations. Targeting mitochondrial metabolism as an adjuvant therapy could therefore improve therapeutic responses to TKI for patients with BCR-ABL(+) and FLT3(ITD) leukemias.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Oligomycins/pharmacology , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Dihydrolipoyllysine-Residue Acetyltransferase/genetics , Disease Models, Animal , Female , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate/pharmacology , Ketone Oxidoreductases/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , RNA Interference , RNA, Small Interfering , Superoxides/metabolism , fms-Like Tyrosine Kinase 3/metabolism
6.
Cancer Prev Res (Phila) ; 6(7): 625-33, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23639480

ABSTRACT

Colorectal cancer (CRC) is the second leading cause of cancer-associated deaths, suggesting that additional strategies are needed to prevent/control this malignancy. As CRC growth and progression involve a large window (10-15 years), chemopreventive intervention could be a practical/translational strategy. Azoxymethane (AOM)-induced colon tumorigenesis in mice resembles human CRC in terms of progression of ACF to polyps, adenoma, and carcinomas and associated molecular mechanisms. Accordingly, herein we investigated grape seed extract (GSE) efficacy against AOM-induced colon tumorigenesis in A/J mice. GSE was fed in diet at 0.25% or 0.5% (w/w) dose starting 2 weeks after last AOM injection for 18 or 28 weeks. Our results showed that GSE feeding significantly decreases colon tumor multiplicity and overall tumor size. In biomarker analysis, GSE showed significant antiproliferative and pro-apoptotic activities. Detailed mechanistic studies highlighted that GSE strongly modulates cytokines/interleukins and miRNA expression profiles as well as miRNA processing machinery associated with alterations in NF-κB, ß-catenin, and mitogen-activated protein kinase (MAPK) signaling. Additional studies using immunohistochemical analyses found that indeed GSE inhibits NF-κB activation and decreases the expression of its downstream targets (COX-2, iNOS, VEGF) related to inflammatory signaling, downregulates ß-catenin signaling and decreases its target gene c-myc, and reduces phosphorylated extracellular signal-regulated kinase (ERK)1/2 levels. Together, these finding suggested that inflammation, proliferation, and apoptosis are targeted by GSE to prevent CRC. In summary, this study for the first time shows alterations in the expression of miRNAs and cytokines by GSE in its efficacy against AOM-induced colon tumorigenesis in A/J mouse sporadic CRC model, supporting its translational potential in CRC chemoprevention.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Azoxymethane/toxicity , Cell Transformation, Neoplastic/drug effects , Colonic Neoplasms/drug therapy , Grape Seed Extract/pharmacology , MicroRNAs/genetics , Signal Transduction/drug effects , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Carcinogens/toxicity , Cell Proliferation , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Cytokines/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Profiling , Immunoenzyme Techniques , Inflammation , Male , Mice , Mice, Inbred A , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Phosphorylation , beta Catenin/metabolism
7.
Cancer Prev Res (Phila) ; 6(1): 40-50, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23213071

ABSTRACT

Herein, employing anatomical and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), we evaluated noninvasively, the in vivo, chemopreventive efficacy of inositol hexaphosphate (IP6), a major constituent of high-fiber diets, against prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Male TRAMP mice, beginning at 4 weeks of age, were fed with 1%, 2%, or 4% (w/v) IP6 in drinking water or only drinking water till 28 weeks of age and monitored using MRI over the course of study. Longitudinal assessment of prostate volumes by conventional MRI and tumor vascularity by gadolinium-based DCE-MRI showed a profound reduction in tumor size, partly due to antiangiogenic effects by IP6 treatment. As potential mechanisms of IP6 efficacy, decrease in the expression of glucose transporter GLUT-4 protein together with an increase in levels of phospho-AMP-activated kinase (AMPK(Th172)) were observed in prostate tissues of mice from IP6 fed-groups, suggesting that IP6 is interfering with the metabolic events occurring in TRAMP prostate. Investigative metabolomics study using quantitative high-resolution (1)H-NMR on prostate tissue extracts showed that IP6 significantly decreased glucose metabolism and membrane phospholipid synthesis, in addition to causing an increase in myoinositol levels in the prostate. Together, these findings show that oral IP6 supplement blocks growth and angiogenesis of prostate cancer in the TRAMP model in conjunction with metabolic events involved in tumor sustenance. This results in energy deprivation within the tumor, suggesting a practical and translational potential of IP6 treatment in suppressing growth and progression of prostate cancer in humans.


Subject(s)
Magnetic Resonance Imaging/methods , Phytic Acid/pharmacology , Prostatic Neoplasms/pathology , AMP-Activated Protein Kinases/metabolism , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Body Weight , Cell Proliferation , Disease Models, Animal , Disease Progression , Dose-Response Relationship, Drug , Glucose Transporter Type 4/metabolism , Immunohistochemistry/methods , Magnetic Resonance Spectroscopy/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL