Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Front Mol Biosci ; 10: 1248742, 2023.
Article in English | MEDLINE | ID: mdl-38328786

ABSTRACT

ß-Thalassemia patients suffer from ineffective erythropoiesis and increased red blood cell (RBC) hemolysis. Blood transfusion, erythropoietic enhancement, and antioxidant supplementation can ameliorate chronic anemia. Green tea extract (GTE) is comprised of catechin derivatives, of which epigallocatechin-3-gallate (EGCG) is the most abundant, presenting free-radical scavenging, iron-chelating, and erythropoiesis-protective effects. The present study aimed to evaluate the effects of GTE tablets on the primary outcome of erythropoiesis and oxidative stress parameters in transfusion-dependent ß-thalassemia (TDT) patients. Twenty-seven TDT patients were randomly divided into placebo and GTE tablet (50 and 100 mg EGCG equivalent) groups and assigned to consume the product once daily for 60 days. Blood was collected for analysis of hematological, biochemical, and oxidative stress parameters. Accordingly, consumption of GTE tablets improved blood hemoglobin levels when compared with the placebo; however, there were more responders to the GTE tablets. Interestingly, amounts of nonheme iron in RBC membranes tended to decrease in both GTE tablet groups when compared with the placebo. Importantly, consumption of GTE tablets lowered plasma levels of erythroferrone (p < 0.05) and reduced bilirubin non-significantly and dose-independently. Thus, GTE tablets could improve RBC hemolysis and modulate erythropoiesis regulators in transfusion-dependent thalassemia patients.

2.
Front Physiol ; 13: 1053060, 2022.
Article in English | MEDLINE | ID: mdl-36620219

ABSTRACT

ß-Thalassemia is characterized by ineffective erythropoiesis leading to chronic anemia. Thus, increased iron absorption from the duodenum and via blood transfusions is required to maintain normal blood hemoglobin (Hb) levels and iron chelators in the removal of excessive iron. Certain agents are also needed for the improvement of stress erythropoiesis and iron dysregulation. Green tea extract (GTE), which is rich in epigallocatechin-3-gallate (EGCG), is known to possess radical scavenging and iron-chelating activities. We aimed to assess the effects of green tea extract on erythroid regulators, iron mobilization and anti-lipid peroxidation in the liver, spleen, and kidneys of iron-loaded ß-globin gene knockout thalassemic (BKO) mice. Our results indicate that treatments of green tea extract and/or deferiprone (DFP) diminished levels of plasma erythropoietin (EPO) and erythroferrone (ERFE), and consistently suppressed kidney Epo and spleen Erfe mRNA expressions (p < .05) in iron- loaded BKO mice when compared with untreated mice. Coincidently, the treatments decreased plasma ferritin (Ft) levels, iron content levels in the liver (p < .05), spleen (p < .05), and kidney tissues of iron-loaded BKO mice. Furthermore, lipid-peroxidation products in the tissues and plasma were also decreased when compared with untreated mice. This is the first evidence of the orchestral role of green tea extract abundant with epigallocatechin-3-gallate in improving ineffective erythropoiesis, iron dysregulation and oxidative stress in iron-overloaded ß-thalassemic mice.

3.
Molecules ; 26(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34443567

ABSTRACT

Redox-active iron generates reactive oxygen species that can cause oxidative organ dysfunction. Thus, the anti-oxidative systems in the body and certain dietary antioxidants, such as anthocyanins, are needed to control oxidative stress. We aimed to investigate the effects of dielectric barrier discharge (DBD) plasma technology in the preparation of Riceberry™ rice flour (PRBF) on iron-induced oxidative stress in mice. PRBF using plasma technology was rich in anthocyanins, mainly cyanidine-3-glucoside and peonidine-3-glucoside. PRBF (5 mg AE/mg) lowered WBC numbers in iron dextran (FeDex)-loaded mice and served as evidence of the reversal of erythrocyte superoxide dismutase activity, plasma total antioxidant capacity, and plasma and liver thiobarbituric acid-reactive substances in the loading mice. Consequently, the PRBF treatment was observed to be more effective than NAC treatment. PRBF would be a powerful supplementary and therapeutic antioxidant product that is understood to be more potent than NAC in ameliorating the effects of iron-induced oxidative stress.


Subject(s)
Anthocyanins/analysis , Antioxidants/pharmacology , Flour/analysis , Iron/adverse effects , Oryza/chemistry , Oxidative Stress/drug effects , Plasma Gases/chemistry , Animals , Electric Impedance , Mice
SELECTION OF CITATIONS
SEARCH DETAIL