Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Microsc Res Tech ; 87(1): 133-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37728140

ABSTRACT

The emergence of multidrug resistance (MDR) in bacterial pathogens is a serious public health concern. A significant therapeutic target for MDR infections is the quorum sensing-regulated bacterial pathogenicity. Determining the anti-quorum sensing abilities of certain medicinal plants against bacterial pathogens as well as the in-silico interactions of particular bioactive phytocompounds with QS and biofilm-associated proteins were the objectives of the present study. In this study, 6 medicinal plants were selected based on their ethnopharmacological usage, screened for Anti-QS activity and Artemisia annua leaf extract (AALE) demonstrated pigment inhibitory activity against Chromobacterium violaceum CV12472. Further, the methanol active fraction significantly inhibited the virulence factors (pyocyanin, pyoverdine, rhamnolipid and swarming motility) of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 at respective sub-MICs. The inhibition of biofilm was determined using a microtiter plate test and scanning electron microscopy. Biofilm formation was impaired by 70%, 72% and 74% in P. aeruginosa, C. violaceum and S. marcescens, respectively at 0.5xMIC of the extract. The phytochemical content of the extract was studied using GC-MS and 1, 8-cineole was identified as major bioactive compound. Furthermore, 1, 8-cineole was docked with quorum sensing (QS) proteins (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT). In silico docking and dynamics simulations studies suggested interactions with QS-receptors CviR', LasI, LasR, and biofilm proteins PilY1, PilT for anti-QS activity. Further, 1, 8-cineole demonstrated 66% and 51% reduction in violacein production and biofilm formation, respectively to validate the findings of computational analysis. Findings of the present investigation suggests that 1, 8-cineole plays a crucial role in the QS and biofilm inhibitory activity demonstrated by Artemisia annua extract. RESEARCH HIGHLIGHTS: Artemisia annua leaf extract (AALE) methanol fraction demonstrated broad-spectrum QS and biofilm inhibition Scanning electron microscopy (SEM) confirmed biofilm inhibition Molecular docking and simulation studies suggested positive interactions of 1,8-cineol with QS-receptors and biofilm proteins.


Subject(s)
Artemisia annua , Plants, Medicinal , Quorum Sensing , Virulence , Eucalyptol/pharmacology , Plants, Medicinal/chemistry , Artemisia annua/metabolism , Molecular Docking Simulation , Methanol/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Plant Extracts/pharmacology , Bacteria
2.
PLoS One ; 18(12): e0295524, 2023.
Article in English | MEDLINE | ID: mdl-38113217

ABSTRACT

The quorum sensing mechanism relies on the detection and response to chemical signals, termed autoinducers, which regulate the synthesis of virulence factors including toxins, enzymes, and biofilms. Emerging therapeutic strategies for infection control encompass approaches that attenuate quorum-sensing systems. In this study, we evaluated the antibacterial, anti-quorum sensing, and anti-biofilm activities of Psidium guajava L. methanolic leaf extracts (PGME). Minimum Inhibitory Concentrations (MICs) of PGME were determined as 500 µg/ml for C. violaceum and 1000 µg/ml for P. aeruginosa PAO1. Significantly, even at sub-MIC concentrations, PGME exhibited noteworthy anti-quorum sensing properties, as evidenced by concentration-dependent inhibition of pigment production in C. violaceum 12742. Furthermore, PGME effectively suppressed quorum-sensing controlled virulence factors in P. aeruginosa PAO1, including biofilm formation, pyoverdin, pyocyanin, and rhamnolipid production, with concentration-dependent inhibitory effects. Phytochemical analysis utilizing GC-MS revealed the presence of compounds such as alpha-copaene, caryophyllene, and nerolidol. In-silico docking studies indicated a plausible mechanism for the observed anti-quorum sensing activity, involving favorable binding and interactions with QS-receptors, including RhlR, CviR', LasI, and LasR proteins. These interactions were found to potentially disrupt QS pathways through suppression of AHL production and receptor protein blockade. Collectively, our findings propose PGME as a promising candidate for the treatment of bacterial infections. Its attributes that mitigate biofilm development and impede quorum-sensing mechanisms highlight its potential therapeutic value.


Subject(s)
Psidium , Quorum Sensing , Psidium/metabolism , Biofilms , Virulence Factors/metabolism , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Pseudomonas aeruginosa
3.
Front Mol Biosci ; 10: 1292509, 2023.
Article in English | MEDLINE | ID: mdl-37965379

ABSTRACT

Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 µg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.

4.
RSC Adv ; 13(44): 31059-31066, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37881762

ABSTRACT

Renewed interest towards natural substances has been pushed by the widespread diffusion of antibiotic resistance. Curcumin I is the most active and effective constituent of curcuminoids extracted from Curcuma longa and, among other beneficial effects, attracted attention for its antimicrobial potential. Since the poor pharmacokinetic profile hinders its efficient utilization, in the present paper, we report encapsulation of curcumin I in poly(styrene-co-maleic acid) (SMA-CUR) providing a nanomicellar system with improved aqueous solubility and bioavailability. SMA-CUR was characterized by means of size, zeta potential, polydispersity index, atomic force microscopy (AFM), drug release studies, spectroscopic properties and stability. SMA-CUR nanoformulation displayed exciting antimicrobial properties compared to free curcumin I towards Gram-positive and Gram-negative clinical isolates.

5.
Article in English | MEDLINE | ID: mdl-37770145

ABSTRACT

Intensive use of chemical pesticides in agriculture poses environmental risks and may have negative impacts on agricultural productivity. The potential phytotoxicity of two chemical pesticides, chlorpyrifos (CPS) and fensulfothion (FSN), were evaluated using Cicer arietinum and Allium cepa as model crops. Different concentrations (0-100 µgmL-1) of both CPS and FSN decreased germination and biological attributes of C. arietinum. High pesticide doses significantly (p ≤ 0.05) caused membrane damage by producing thiobarbituric acid reactive substances (TBARS) and increasing proline (Pro) content. Pesticides elevated ROS levels and substantially increased the superoxide anions and H2O2 concentrations, thus aggravating cell injury. Plants exposed to high pesticide dosages displayed significantly higher antioxidant levels to combat pesticide-induced oxidative stress. Ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) increased by 48%, 93%, 71%, 52% and 94%, respectively, in C. arietinum roots exposed to 100 µgFSNmL-1. Under CLSM, pesticide-exposed C. arietinum and 2',7'-dichlorodihydrofluorescein diacetate (2'7'-DCF) and 3,3'-diaminobenzidine stained roots exhibited increased ROS production in a concentration-dependent manner. Additionally, enhanced Rhodamine 123 (Rhd 123) and Evan's blue fluorescence in roots, as well as changes in mitochondrial membrane potential (ΔΨm) and cellular apoptosis, were both associated with high pesticide dose. Allium cepa chromosomal aberration (CAs) assay showed a clear reduction in mitotic index (MI) and numerous chromosomal anomalies in root meristematic cells. Additionally, a-dose-dependent increase in DNA damage in root meristematic cells of A. cepa and conversion of the super-coiled form of DNA to open circular in pBR322 plasmid revealed the genotoxic potential of pesticides. The application of CPS and FSN suggests phytotoxic and cyto-genotoxic effects that emphasize the importance of careful monitoring of current pesticide level in soil before application and addition at optimal levels to soil-plant system. It is appropriate to prepare both target-specific and slow-release agrochemical formulations for crop protection with concurrent safeguarding of agroecosystems.


Subject(s)
Chlorpyrifos , Insecticides , Pesticides , Insecticides/toxicity , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Antioxidants/pharmacology , Pesticides/toxicity , Onions , Chlorpyrifos/metabolism , Chlorpyrifos/pharmacology , DNA Damage , Soil , Plant Roots
6.
Molecules ; 28(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36771169

ABSTRACT

Wild plants supply food and shelter to several organisms; they also act as important sources of many nutrients and pharmaceutical agents for mankind. These plants are widely used in traditional medicinal systems and folk medicines. The present study analyzed the nutritional and proximate composition of various compounds in selected wild plants available in the UAE, viz., Chenopodium murale L., Dipterygium glaucum Decne., Heliotropium digynum Asch. ex C.Chr., Heliotropium kotschyi Gürke., Salsola imbricata Forssk., Tribulus pentandrus Forssk., Zygophyllum qatarense Hadidi. The predominant amino acids detected in the plants were glycine, threonine, histidine, cysteine, proline, serine, and tyrosine; the highest quantities were observed in H. digynum and T. pentandrus. The major fatty acids present were long-chain saturated fatty acids; however, lauric acid was only present in S. imbricata. The presence of essential fatty acids such as oleic acid, α-Linoleic acid, and linolenic acid was observed in H. digynum, S. imbricata, and H. kotschyi. These plants also exhibited higher content of nutrients such as carbohydrates, proteins, fats, ash, and fiber. The predominant vitamins in the plants were vitamin B complex and vitamin C. C. murale had higher vitamin A, whereas vitamin B complex was seen in T. pentandrus and D. glaucum. The phosphorus and zinc content were high in T. pentandrus; the nitrogen, calcium, and potassium contents were high in H. digynum, and D. glaucum. Overall, these plants, especially H. digynum and T. pentandrus contain high amounts of nutritionally active compounds and important antioxidants including trace elements and vitamins. The results from the experiment provide an understanding of the nutritional composition of these desert plant species and can be better utilized as important agents for pharmacological drug discovery, food, and sustainable livestock production in the desert ecosystem.


Subject(s)
Vitamin B Complex , United Arab Emirates , Ecosystem , Fatty Acids/analysis , Plants , Nutritive Value
7.
Biofouling ; 38(7): 715-728, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36062553

ABSTRACT

Extracts of Centella asiatica leaves (LEs), and in-vitro leaf-calli (CEs), were investigated for antibacterial, antibiofilm, and anti-quorum sensing activities. Ethyl acetate extracts from leaves (EALE), leaf-calli (EACE), methanolic extracts from leaves (MELE), and leaf-calli (MECE) showed antibacterial activity; the minimum inhibitory concentrations (MICs) of LEs and CEs ranged from 0.312-2.50 mg ml-1 and 0.625 - 2.50 mg ml-1, respectively. The MICs of EALE and EACE were 2.50 mg ml-1, each, for C. violaceum 12742, and P. aeruginosa PAO1. At sub-MIC levels, EALE and EACE showed anti-quorum sensing (anti-QS) activity, demonstrated by concentration dependent pigment inhibition of C. violaceum 12742. Similarly, EALE and EACE inhibited QS-controlled virulence factors in P. aeruginosa PAO1 (biofilm, pyocyanin, and pyoverdin); again, the inhibition was concentration-dependent. The best effect was at immediate sub-MIC concentration i.e. 1250 µg ml-1. GC-MS analyses revealed the presence of compound 9,12-Octadecadienoic acid, and in silico docking study suggested interactions with QS-receptors CviR', LasI, and LasR proteins for anti-QS activity.


Subject(s)
Biofouling , Centella , Anti-Bacterial Agents/pharmacology , Biofilms , Biofouling/prevention & control , Centella/metabolism , Linoleic Acid/pharmacology , Plant Extracts/pharmacology , Plant Leaves , Pseudomonas aeruginosa , Pyocyanine/metabolism , Virulence Factors/metabolism
8.
Data Brief ; 31: 105758, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32577441

ABSTRACT

The importance of quinoa has been emphasized considerably in the recent decades, as a highly nutritional crop seed that is tolerant to salinity and amenable to arid agronomical conditions. The focus of this paper is to provide raw and a supplemental data of the research article entitled "Agronomic performance of irrigated quinoa in desert areas: comparing different approaches for early assessment of salinity stress" [1], aiming to compare different approaches for early detection, at the genotypic and crop levels, of the effect of salinity caused by irrigation on the agronomic performance of this crop. A set of 20 genotypes was grown under drip irrigation in sandy soil, amended with manure, at the International Center for Biosaline Agriculture (UAE) for two weeks, after which half of the trial was submitted to irrigation with saline water and this was continued until crop maturity. After eight weeks of applying the two irrigation regimes, pigment contents were evaluated in fully expanded leaves. The same leaves were then harvested, dried and the stable carbon and nitrogen isotope compositions (δ13C and δ15N) and the total nitrogen and carbon contents of the dry matter analyzed, together with ion concentrations. At maturity yield components were assessed and yield harvested. Data analysis demonstrated significant differences in genotypes response under each treatment, within all assessed parameters. The significant level was provided using the Tukey-b test on independent samples. The present dataset highlights the potential use of different approaches to crop phenotyping and monitoring decision making.

9.
Metallomics ; 10(9): 1315-1327, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30141802

ABSTRACT

There has been rapid increase globally in the production of functionally divergent nanoparticles in recent times. The uncontrolled discharge of such nanomaterials is a serious threat to the environment. We assess the impact of various-sized metal oxide nanoparticles (MONPs) on cell cycle progression and induction of oxidative stress in onions. Of these, CuO-NPs and TiO2-NPs significantly reduced the mitotic index (MI) by 28% and 17%, respectively, whereas Al2O3-NPs augmented the MI by 13% compared to untreated onion roots. The NPs internalization into the root tissues followed a dose dependent fashion. Also, several types of chromosomal aberration such as bridges, stickiness, vagrant, broken, and lag chromosomes were noticed. The reactive oxygen species activity of roots growing under CuO-NPs, Al2O3-NPs, and TiO2-NPs was significantly increased by 58, 30, and 10%, respectively. The superoxide dismutases activity (U g-1 FW) of roots increased from 2.4 ± 0.4 (control) to 6.1 ± 0.8 (CuO-NPs), 4.1 ± 0.2 (Al2O3-NPs) and 2.9 ± 0.2 (TiO2-NPs), whereas, catalase activity (mmoles min-1 g-1 FW) was recorded as 18.5 ± 2.1 (CuO-NPs), 15 ± 1.1 (Al2O3-NPs) and 13.8 ± 1 (TiO2-NPs) against 11.4 ± 1 (control). The formazan formed due to superoxide (O2˙-) reaction with nitroblue tetrazolium showed a dose dependent increase in roots treated with Al2O3-NPs and TiO2-NPs. Interestingly, under CuO-NPs exposure, the absorbance was considerably high at 200 µg ml-1 which dropped at 2000 µg ml-1 suggesting a clear attenuation of O2˙- by superoxide scavenging enzymes. The present findings provide base line data for better understanding of the mechanistic basis of phytotoxicity of MONPs to onion plants which can further be extended to other vegetable crops.


Subject(s)
Chromosome Aberrations/chemically induced , Metal Nanoparticles/toxicity , Onions/drug effects , Onions/metabolism , Mitosis/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
10.
J Arthroplasty ; 33(6): 1752-1756, 2018 06.
Article in English | MEDLINE | ID: mdl-29422350

ABSTRACT

BACKGROUND: The optimum bearing surface for total hip arthroplasty remains debatable. We have previously published our outcome at 10 years and this represents the 15-year follow-up. METHODS: A total of 58 hips (in 57 patients with a mean age of 42 years) were randomized to receive either ceramic-on-ceramic (CoC) or ceramic-on-polyethylene (CoP) total hip arthroplasty. We prospectively followed for survivorship, functional outcomes (using the Harris Hip Score and the St Michael's Hip Score [SMH]), and radiological outcomes. RESULTS: At a minimum of 15 years, 3 patients had died, but not been revised. Seven were lost to follow-up. Five cases from the CoP group were revised (4 for polyethylene wear and osteolysis). Four from the CoC were revised; one each for head fracture, instability, infection, and trunnionosis. Both groups showed statistically significant improvements in Harris Hip Score scores and SMH functional scores, with no difference between the 2 bearings. For the CoP group, there was an improvement from 15.6 to 21.5 in the SMH and from 48.8 to 88.7 (P > .05); and for CoC, this improvement was 15.8 to 23.5 and 50.3 to 94.6 (P > .05), respectively. Mean wear rate of the polyethylene was 0.092 mm/y and for the CoC was 0.018 mm/y. Two patients in the CoC group had evidence of acetabular osteolysis vs 3 in the CoP. Six patients had femoral osteolysis in the CoC group and 12 in the CoP group. CONCLUSION: Survivorship and function of the 2 bearing groups remains comparable; while the polyethylene wear and osteolysis may represent issues in the future.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Ceramics , Hip Prosthesis/statistics & numerical data , Polyethylene , Acetabulum/surgery , Adult , Aluminum Oxide , Female , Follow-Up Studies , Hip Joint/surgery , Hip Prosthesis/adverse effects , Humans , Male , Middle Aged , Osteolysis/etiology , Prospective Studies , Prosthesis Design , Radiography , Recovery of Function , Reoperation , Treatment Outcome
11.
Biosci Rep ; 37(3)2017 Jun 30.
Article in English | MEDLINE | ID: mdl-28336764

ABSTRACT

Moringa oleifera has potential anti-hyperglycaemic effects that have been reported earlier by different scientific groups using animal models of diabetes. We aimed to explore the possible mechanisms of action of M. oleifera extract through different methods. Primarily, we measured fasting blood glucose and performed glucose tolerance test, in Type 2 diabetic rats. Further, we studied the effects of extracts on pancreatic insulin concentration. Extracts' effect on carbohydrate breakdown was assayed using α-amylase inhibition assays and assay of six different segments of gastrointestinal (GI) tracts. An in situ intestinal perfusion model and a glucose fibre assay were performed to see the potentiality of M. oleifera on glucose absorption. M. oleifera showed no significant change in insulin secretion in vivo Additionally, substantial effect of the extract was seen on retarded glucose absorption and in the in situ perfusion study of rat intestinal model. α-amylase action was inhibited by the extract, yet again, these findings were further confirmed via the Six Segment assay, where sucrose digestion was found to be inhibited throughout the length of the GI tract. A combined in vitro, in vivo and in situ tests justified the potential of anti-hyperglycaemic activity of M. oleifera and its tissue level mechanism is also justified.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glycoside Hydrolases/antagonists & inhibitors , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Moringa oleifera , Plant Extracts/therapeutic use , Animals , Blood Glucose/analysis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Glycoside Hydrolases/metabolism , Hyperglycemia/blood , Hyperglycemia/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Intestinal Absorption/drug effects , Moringa oleifera/chemistry , Plant Extracts/pharmacology , Rats , Rats, Long-Evans
12.
Bioorg Chem ; 52: 1-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24269986

ABSTRACT

Thioureas are exceptionally versatile building blocks towards the synthesis of wide variety of heterocyclic systems, which also possess extensive range of pharmacological activities. The substituted benzoic acids were converted into corresponding acid chlorides, these acid chlorides were then treated with potassium thiocyanate in acetone and then the reaction mixture was refluxed for 1-2h afford ethyl 4-(3-benzoylthioureido)benzoates thioureas in good yields. All the newly synthesized compounds were evaluated for their urease inhibitory activities and were found to be potent inhibitors of urease enzyme. Compounds 1f and 1g were identified as the most potent urease inhibitors (IC50 0.21 and 0.13 µM, respectively), and was 100-fold more potent than the standard inhibitors. Further molecular docking studies were carried out using the crystal structure of urease to find out the binding mode of the inhibitors with the enzyme.


Subject(s)
Benzoates/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Urease/antagonists & inhibitors , Antioxidants/chemistry , Antioxidants/pharmacology , Benzoates/chemistry , Canavalia/enzymology , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Urease/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL