Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3133-3143, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34467705

ABSTRACT

To study the effect of mineral Chloriti Lapis on pulmonary metabolites and metabolic pathways in lung tissues of rats with acute exacerbation of chronic obstructive pulmonary disease(AECOPD). The AECOPD rat model of phlegm heat syndrome was replicated by the method of smoking combined with Klebsiella pneumoniae infection. Except for using UPLC-Q-TOF-MS analysis, SPSS 18.0, SIMCA 13.0 and other software were also used for statistical analysis. Through literature search and online database comparison, the differential metabolites were identified, and the possible metabolic pathways were analyzed. After 15 days of administration, PLS-DA analysis was carried out on lung tissue samples of rats in each group. The results showed that the metabolic profiles of lung tissues of rats in each group could be well separated, which indicated that Chloriti Lapis and aminophylline had significant intervention effect on the lung metabolic profile of rats with AECOPD. Moreover, the metabolic profile of Chloriti Lapis group was closer to that of control group, and the intervention effect was better than that of aminophylline group. As a result, 15 potential differential metabolites were identified: phytosphingosine, sphinganine, tetradecanoylcarnitine, L-palmitoylcarnitine, elaidic carnitine, lysoPC[18∶2(9Z,12Z)], lysoPC(16∶0), lysoPC[18∶1(9Z)], lysoPC(18∶0), stearic acid, lysoPC(15∶0), arachidonic acid, docosapentaenoic acid, linoleic acid and palmitic acid. Among them, Chloriti Lapis could significantly improve the levels of 10 differential metabolites of phytosphingosine, tetradecanoylcarnitine, L-palmitoylcarnitine, elaidic carnitine, lysoPC[18∶2(9Z,12Z)], lysoPC(16∶0), lysoPC[18∶1(9Z)], stearic acid, lysoPC(15∶0), and palmitic acid(P<0.05). The intervention effect of Chloriti Lapis group was better than that of aminophylline group. Analysis of metabolic pathways showed that there were 8 possible metabolic pathways that could be affected, and three of the most important metabolic pathways(pathway impact>0.1) were involved: linoleic acid metabolism, arachidonic acid metabolism, and sphingolipid metabolism. Chloriti Lapis had obvious intervention effects on lung tissue-related metabolites and metabolic pathways in rats with AECOPD, and the effect was better than that of aminophyllinne.


Subject(s)
Medicine, Chinese Traditional , Pulmonary Disease, Chronic Obstructive , Animals , Lung , Metabolomics , Minerals , Rats
2.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3694-3704, 2021 Jul.
Article in Chinese | MEDLINE | ID: mdl-34402294

ABSTRACT

The effects of Chloriti Lapis on metal elements in plasma and lung tissue of acute exacerbation of chronic obstructive pulmonary disease( AECOPD) rats were studied. The rat AECOPD model with phlegm heat syndrome was established by smoking combined with Klebsiella pneumoniae infection. After the rats were treated by Chloriti Lapis,the contents of metal elements in plasma and lung tissue were determined by inductively coupled plasma-optical emission spectroscopy( ICP-OES) and inductively coupled plasma mass spectrometry( ICP-MS). The changes in the contents of metal elements were analyzed by SPSS 18. 0. Further,the correlations of differential metal elements( including Cu/Zn ratio) with differential metabolites in plasma,lung tissue and urine of AECOPD rats treated with Chloriti Lapis were analyzed. The results showed that Chloriti Lapis significantly up-regulated the contents of Fe,Al,Mn,Cu,Zn,Sn( P<0. 05),V,Co( P< 0. 01) and Cu/Zn ratio( P< 0. 05),and significantly down-regulated the contents of Ti( P< 0. 05)and Pb( P<0. 05) in the model rat plasma. It significantly increased the content of Be( P<0. 05) and decreased the contents of Mg,Ti and Al( P<0. 01) in model rat lung tissue. The element profiles of normal group,model group and Chloriti Lapis group can be well separated. Chloriti Lapis group and other groups were clustered into two categories. The taurine in plasma and phytosphingosine in lung tissue had the strongest correlations with differential metal elements. The Fe,Al,Mg,Be,Ti,V,Mn,Cu,Zn,Sn,and Co in Chloriti Lapis may directly or indirectly participate in the intervention of AECOPD rats. This group of metal elements may be the material basis of Chloriti Lapis acting on AECOPD rats,and reduce the Cu/Zn value in vivo. It was further confirmed that Chloriti Lapis could interfere with the metabolic pathways of taurine and hypotaurine in plasma and urine as well as the sphingolipid metabolism pathway in lung tissue of AECOPD rats. In addition,this study confirmed that long-term smoking can cause high-concentration Cd accumulation in the lung and damage the lung tissue.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Trace Elements , Animals , Lung , Medicine, Chinese Traditional , Minerals , Rats , Spectrum Analysis , Trace Elements/analysis
3.
J Chromatogr Sci ; 56(10): 895-902, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29982351

ABSTRACT

Leaves of Platycladus orientalis have been used as blood cooling and homeostatic therapy for thousands of years in traditional Chinese medicine. Emerging evidences of modern pharmacology have proved flavonoids as the key elements responsible for the efficacies. However, there has been no report on pharmacokinetic study of the flavonoids from Platycladus orientalis leaves extract. In this study, a sensitive and rapid ultra-flow liquid chromatography-tandem mass spectrometry method was established and validated for the simultaneous determination of amentoflavone, afzelin, hinokiflavone and quercitrin in rat plasma. The four flavonoids and luteolin (internal standard, IS) were recovered from rat plasma by methanol-ethyl acetate (v:v, 50:50). Chromatographic separation was performed on a C18 column with gradient elution. Our results showed that the recoveries from spiked control samples were more than 85% for all analytes and IS. The relative standard deviations of intra-day and inter-day precision were within 15% while the REs ranged from -6.6% to 8.0%. The validated method in this study was successfully applied to pharmacokinetic study in healthy rats after oral administration of P. orientalis leaves extract.


Subject(s)
Chromatography, High Pressure Liquid/methods , Flavonoids/blood , Flavonoids/pharmacokinetics , Tracheophyta/chemistry , Animals , Drug Stability , Flavonoids/chemistry , Limit of Detection , Linear Models , Male , Plant Extracts/administration & dosage , Plant Extracts/pharmacokinetics , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tandem Mass Spectrometry/methods
4.
J Ethnopharmacol ; 184: 187-95, 2016 May 26.
Article in English | MEDLINE | ID: mdl-26965366

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Annona squamosa Linn (Annonaceae) is a commonly used and effective traditional Chinese medicine (TCM) especially in the South China. The seeds of Annona squamosa Linn (SAS) have been used as a folk remedy to treat "malignant sores" (cancer) in South of China, but they also have high toxicity on human body. AIM OF THE STUDY: To discover the potential biomarkers in the mice caused by SAS. MATERIALS AND METHODS: We made metabonomics studies on the toxicity of SAS by ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis. RESULTS: The significant difference in metabolic profiles and changes of metabolite biomarkers between the Control group and SAS group were well observed. 11 positive ions and 9 negative ions (P<0.05) were indicated based on UFLC-QTOF-HDMS. The metabolic pathways of SAS group are discussed according to the identified endogenous metabolites, and eight metabolic pathways are identified using Kyoto Encyclopedia of Genes and Genomes (KEGG). CONCLUSIONS: The present study demonstrates that metabonomics analysis could greatly facilitate and provide useful information for the further comprehensive understanding of the pharmacological activity and potential toxicity of SAS in the progress of them being designed to a new anti-tumor medicine.


Subject(s)
Annona , Metabolome/drug effects , Plant Extracts/toxicity , Animals , Biomarkers/urine , Chromatography, Liquid/methods , Female , Liver/drug effects , Liver/pathology , Metabolomics , Mice, Inbred ICR , Pattern Recognition, Automated , Seeds , Spectrometry, Mass, Electrospray Ionization
5.
J Pharm Biomed Anal ; 94: 1-11, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24531004

ABSTRACT

Peperomia dindygulensis, with secolignans (SLs) as major bioactive constituents, is a commonly used traditional folk medicine in mainland China for treatment of stomach, liver, mammary, and esophageal cancers. However, to date, there is no method available for the qualitative and quantitative analyses of SLs in this medicinal plant. The purpose of this study was to establish a sensitive, selective, and reproducible method for rapidly profiling, identifying, and determining SLs in the whole plant of P. dindygulensis. Ultra high-performance liquid chromatography (UHPLC) coupled with ultraviolet detector (UV) and quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS) were used for this analyses. The fragmentation behaviors of different types of SLs were described. A total of thirteen SLs, including two new derivatives, were identified or tentatively characterized in P. dindygulensis samples. In addition, seven major SLs in herbal samples from different regions in China were successfully determined. The method developed in this study is suitable for the qualitative and quantitative analyses of SLs in P. dindygulensis, and may be applicable for determining or identifying SLs from other Pepermia genus plants.


Subject(s)
Peperomia/chemistry , Plants, Medicinal/chemistry , China , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Spectrophotometry, Ultraviolet/methods , Tandem Mass Spectrometry/methods
6.
Article in English | MEDLINE | ID: mdl-24295907

ABSTRACT

A rapid and sensitive ultra fast performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of five bioactive secolignans in Peperomia dindygulensis extract, including peperomin A, peperomin B, peperomin C, 4″-hydroxypeperomin B and 4″-hydroxypeperomin C in rat plasma. Arctigenin was used as the internal standard. The separation was performed on an Innovation™ Polar-RP C18 column by a gradient elution within a runtime of 7min. The mobile phase consisted of A (methanol) and B (0.1% formic acid in water) at a flow rate of 0.4mL/min. The detection was accomplished by using positive ion TurboIonSpray ionization in multiple reaction monitoring mode. The method was linear for all analytes over investigated range with all correlation coefficients greater than 0.9972. The lower limits of quantification were 1.1ng/mL for peperomin A, 1.24ng/mL for peperomin B, 1.02ng/mL for peperomin C, 1.91ng/mL for 4″-hydroxypeperomin B and 1.27ng/mL for 4″-hydroxypeperomin C. The intra- and inter-day precision (RSD%) was within 15% and the accuracy (RE%) ranged from -11.7% to 10.3%. This simple and sensitive method was fully validated and successfully applied to the pharmacokinetic study of peperomin A, peperomin B, peperomin C, 4″-hydroxypeperomin B and 4″-hydroxypeperomin C in rat plasma after oral administration of P. dindygulensis extract.


Subject(s)
Chromatography, High Pressure Liquid/methods , Lignans/blood , Peperomia/chemistry , Plant Extracts/administration & dosage , Tandem Mass Spectrometry/methods , Administration, Oral , Animals , Drug Stability , Lignans/chemistry , Lignans/pharmacokinetics , Male , Plant Extracts/pharmacokinetics , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity
7.
Zhongguo Zhong Yao Za Zhi ; 38(12): 1929-33, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-24066586

ABSTRACT

To establish a fingerprint spectrum for Atractylodis Macrocephalae Rhizoma stir-fried with wheat bran based on UFLC/Q-TOF-MS, and make a principal component analysis (PCA) with Markview software, in order to compare the changes of components between raw and processed Atractylodis Macrocephalae Rhizoma with raw wheat bran as the blank. The results showed that the changed in components raw Atractylodis Macrocephalae Rhizoma and Atractylodis Macrocephalae Rhizoma stir-fried with wheat bran were apparently observed by PCA. Six compounds were identified to have significant changes in mass fraction before and after being stir-fried, namely atractylenolide-I, atractylenolide-II, atractylenolide-III, atractylentrid, atractylon and an unknown compound. Among them, atractylenolide-I and atractylenolide-II generated from dehydration and dehydrogenation of atractylenolide-III may be the material base of Atractylodis Macrocephalae Rhizoma stir-fried with wheat bran for strengthening spleen.


Subject(s)
Atractylodes/chemistry , Chromatography, Liquid/methods , Dietary Fiber , Lactones/analysis , Mass Spectrometry , Principal Component Analysis , Sesquiterpenes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL