Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(4): 130564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272191

ABSTRACT

Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.


Subject(s)
Antioxidants , Nitriles , Pyrazoles , Pyrimidines , Selenomethionine , Animals , Chick Embryo , Antioxidants/metabolism , Chickens/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Janus Kinase 2/metabolism , Lipopolysaccharides/toxicity , Myocytes, Cardiac/metabolism , Oxidative Stress , Pyroptosis , Reactive Oxygen Species/metabolism , Selenomethionine/pharmacology , Selenomethionine/analysis , Selenomethionine/metabolism , STAT3 Transcription Factor/metabolism
2.
Sci Total Environ ; 915: 170129, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242456

ABSTRACT

Decabromodiphenyl ether (BDE-209) is one of the most widely used flame retardants that can infect domestic and wildlife through contaminated feed. Nano­selenium (Nano-Se) has the advantage of enhancing the anti-oxidation of cells. Nonetheless, it remains uncertain whether Nano-Se can alleviate vascular Endothelial cells damage caused by BDE-209 exposure in chickens. Therefore, we established a model with 60 1-day-old chickens, and administered BDE-209 intragastric at a ratio of 400 mg/kg bw/d, and mixed Nano-Se intervention at a ratio of 1 mg/kg in the feed. The results showed that BDE-209 could induce histopathological and ultrastructural changes. Additionally, exposure to BDE-209 led to cardiovascular endoplasmic reticulum stress (ERS), oxidative stress and thioredoxin-interacting protein (TXNIP)-pyrin domain-containing protein 3 (NLRP3) pathway activation, ultimately resulting in pyroptosis. Using the ERS inhibitor 4-PBA in Chicken arterial endothelial cells (PAECs) can significantly reverse these changes. The addition of Nano-Se can enhance the body's antioxidant capacity, inhibit the activation of NLRP3 inflammasome, and reduce cellular pyroptosis. These results suggest that Nano-Se can alleviate the pyroptosis of cardiovascular endothelial cells induced by BDE-209 through ERS-TXNIP-NLRP3 pathway. This study provides new insights into the toxicity of BDE-209 in the cardiovascular system and the therapeutic effects of Nano-Se.


Subject(s)
Cardiovascular System , Halogenated Diphenyl Ethers , Selenium , Animals , Endothelial Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Chickens/metabolism , Pyroptosis , Selenium/metabolism , Endoplasmic Reticulum Stress
3.
Injury ; 41(7): 746-52, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20227691

ABSTRACT

Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Our previous in vitro study demonstrates that CGA presents anti-inflammatory activities in RAW 264.7 cells. Here we show that CGA protects mice against lipopolysaccharide (LPS)-induced acute lung injury (ALI). We treated mice with CGA (5, 20 and 50 mg/kg body weight) 30 min or 3 h after intratracheal administration of LPS. The histological results showed that CGA, at dose of 50 mg/kg, protected mice from LPS-induced ALI which displayed by edema, haemorrhage, blood vessel and alveolar structural damage. CGA inhibited LPS-increased pulmonary MPO activity and migration of polymorphonuclear neutrophils (PMNs) into bronchoalveolar lavage fluid (BALF). Furthermore, CGA markedly decreased the activity of inducible nitric oxide synthase (iNOS) in lung tissues and thus prevented nitric oxide (NO) release in response to LPS challenge. In conclusion, these results indicated that CGA was greatly effective in inhibiting ALI and might act as a potential therapeutic reagent for treating ALI in the future.


Subject(s)
Acute Lung Injury/prevention & control , Anti-Inflammatory Agents/pharmacology , Chlorogenic Acid/pharmacology , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Anti-Inflammatory Agents/administration & dosage , Chlorogenic Acid/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Lung/enzymology , Lung/pathology , Male , Mice , Mice, Inbred ICR , Nitric Oxide Synthase Type II/metabolism , Peroxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL