Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Complementary Medicines
Database
Type of study
Country/Region as subject
Language
Publication year range
1.
Environ Pollut ; 343: 123246, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38158012

ABSTRACT

This study reports size-resolved dithiothreitol (DTT)-based oxidative potential (OP: total and water-soluble) in rural kitchens using liquefied petroleum gas (LPG), firewood (FW), and mixed biomass (MB) fuels in northeastern (NE) India. In comparison to LPG, volume-normalized total OP (OPtotal(v)DTT) was enhanced by a factor of ∼5 in biomass-using kitchens (74 ± 35 to 78 ± 42 nmol min-1 m-3); however, mass-normalized total OP (OPtotal(m)DTT) was similar between LPG and FW users and higher by a factor of 2 in MB-using kitchens. The water-insoluble OP (OPwi(v, m)DTT) fraction in OPtotal(v, m)DTT was greater than 50% across kitchens. Size distributions across kitchens and OPDTT categories ranged from unimodal to trimodal. OPws(v)DTT was driven by metals as well as organics across size fractions while OPwi(v)DTT was majorly constrained by metals with an increasing importance of organics in fine particles of biomass-using kitchens. Multiple linear regression analysis revealed that Cu and Ba explained 71% of the OPtotal(v)DTT variability in LPG-using kitchens, while water-soluble organic carbon (WSOC) and Ba were responsible for 44% variability in FW-using kitchens. Finally, the high internal dose of OPtotal(v)DTT (28-31 nmol min-1 m-3) in biomass-using kitchens established the severity of oxidative stress on the exposed population.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Petroleum , Particulate Matter/analysis , Air Pollutants/analysis , India , Aerosols , Oxidative Stress , Dithiothreitol , Water , Environmental Monitoring , Air Pollution, Indoor/analysis
2.
ACS Nano ; 16(7): 11204-11217, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35792576

ABSTRACT

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.


Subject(s)
Solanum lycopersicum , Sulfur/pharmacology , Plant Diseases/prevention & control , Soil/chemistry , Plants/metabolism , Sulfates/metabolism
3.
J Am Chem Soc ; 142(44): 18782-18794, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33090806

ABSTRACT

Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.


Subject(s)
Ferric Compounds/chemistry , Imines/chemistry , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/pharmacology , Drug Carriers/chemistry , Embryo, Nonmammalian/drug effects , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Hyperthermia, Induced , Magnetic Resonance Imaging , Polylysine/chemistry , Porosity , Temperature , Zebrafish/growth & development
4.
Int J Orthod Milwaukee ; 26(4): 19-22, 2015.
Article in English | MEDLINE | ID: mdl-27029087

ABSTRACT

Class II division 1 malocclusion is the most common malocclusion. It shows specific clinical characteristics such as large overiet and deep overbite resulting in a soft tissue profile imbalance. Majority of the patients with class II division 1 malocclusions have an underlying skeletal discrepancy between the maxilla and mandible. The treatment of skeletal class II division 1 malocclusion is done taking into consideration the age, growth potential, severity of malocclusion, and compliance of patient with treatment. Myofunctional appliances can be successfully used to treat growing patients with class II division 1 malocclusion. This article presents a discussion on successful treatment of class II division 1 malocclusion with growth modification approach using twin block appliances.


Subject(s)
Malocclusion, Angle Class II/therapy , Orthodontic Appliance Design , Orthodontic Appliances, Functional , Overbite/therapy , Cephalometry/methods , Child , Humans , Male , Mandible/growth & development , Mandibular Advancement/instrumentation , Myofunctional Therapy/instrumentation , Palatal Expansion Technique/instrumentation , Patient Care Planning
5.
Article in English | MEDLINE | ID: mdl-19038577

ABSTRACT

Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.


Subject(s)
Cadmium/chemistry , Quantum Dots , Selenium/chemistry , Semiconductors , Sulfur/chemistry , Materials Testing , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Optics and Photonics , Surface Properties , Tin Compounds/chemistry , X-Ray Diffraction
6.
Life Sci ; 80(3): 235-44, 2006 Dec 23.
Article in English | MEDLINE | ID: mdl-17014868

ABSTRACT

The current goal in the treatment of diabetes is not only to enhance the glycemic control but also to improve the associated cardiovascular risk factors. Among many of the strategies available, a co-ligand of PPARalpha and gamma in a single molecule which combines the insulin sensitizing potential of PPARgamma and the beneficial lipid modulating properties of PPARalpha agonism, has gained attention in the recent past. Here we report the biochemical mechanism by which a dual PPAR alpha/gamma agonist Ragaglitazar (Raga) achieves this goal. The PPARalpha component of Raga appears to contribute to a significant increase in beta oxidation, ApoA1 secretion and inhibition of TG biosynthesis in HepG2 cells. These effects of Raga at 60 microM were similar to that shown by Fenofibrate (Feno) at 250 microM. The PPARgamma component of Raga showed significant G3PDH activity and TG accumulation with a corresponding increase in aP2 expression in 3T3L1 cells. Significantly reduced levels of IL-6 and TNFalpha were observed in the culture supernatants of Raga treated 3T3L1 cells. Raga resulted in significant insulin dependent glucose uptake in 3T3L1 with a corresponding increase in GLUT4 expression. Further, Raga showed a significant cholesterol efflux with a corresponding increase in ABCA1 protein expression in THP-1 macrophages. In conclusion, Raga activates both PPARalpha and gamma regulated pathway in adipocytes as well as in hepatocytes which together contributes for its insulin sensitizing and lipid lowering activity. In addition the dual activation of PPAR alpha/gamma also shows an athero-protective potential by inducing reverse cholesterol efflux and inhibiting the pro-inflammatory cytokines.


Subject(s)
Hypolipidemic Agents/pharmacology , Lipid Metabolism/drug effects , Oxazines/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Phenylpropionates/pharmacology , Adipocytes/metabolism , Adipocytes/pathology , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fenofibrate/pharmacology , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Inflammation Mediators/metabolism , Insulin Resistance , Macrophages/metabolism , Macrophages/pathology , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL