Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Control Release ; 350: 761-776, 2022 10.
Article in English | MEDLINE | ID: mdl-36063961

ABSTRACT

Arsenotherapy has been clinically exploited to treat a few types of solid tumors despite of acute promyelocytic leukemia using arsenic trioxide (ATO), however, its efficacy is hampered by inadequate delivery of ATO into solid tumors owing to the absence of efficient and biodegradable vehicles. Precise spatiotemporal control of subcellular ATO delivery for potent arsenotherapy thus remains challengeable. Herein, we report the self-activated arsenic manganite nanohybrids for high-contrast magnetic resonance imaging (MRI) and arsenotherapeutic synergy on triple-negative breast cancer (TNBC). The nanohybrids, composed of arsenic­manganese-co-biomineralized nanoparticles inside albumin nanocages (As/Mn-NHs), switch signal-silent background to high proton relaxivity, and simultaneously afford remarkable subcellular ATO level in acidic and glutathione environments, together with reduced ATO resistance against tumor cells. Then, the nanohybrids enable in vivo high-contrast T1-weighted MRI signals in various tumor models for delineating tumor boundary, and simultaneously yield efficient arsenotherapeutic efficacy through multiple apoptotic pathways for potently suppressing subcutaneous and orthotopic breast models. As/Mn-NHs exhibited the maximum tumor-to-normal tissue (T/N) contrast ratio of 205% and tumor growth inhibition rate of 88% at subcutaneous 4T1 tumors. These nanohybrids further yield preferable synergistic antitumor efficacy against both primary and metastatic breast tumors upon combination with concurrent thermotherapy. More importantly, As/Mn-NHs considerably induce immunogenic cell death (ICD) effect to activate the immunogenically "cold" tumor microenvironment into "hot" one, thus synergizing with immune checkpoint blockade to yield the strongest tumor inhibition and negligible metastatic foci in the lung. Our study offers the insight into clinically potential arsenotherapeutic nanomedicine for potent therapy against solid tumors.


Subject(s)
Antineoplastic Agents , Arsenic , Arsenicals , Neoplasms , Albumins , Apoptosis , Arsenic/pharmacology , Arsenic/therapeutic use , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Arsenicals/therapeutic use , Cell Line, Tumor , Glutathione/pharmacology , Humans , Immune Checkpoint Inhibitors , Manganese , Manganese Compounds , Neoplasms/drug therapy , Oxides , Protons , Tumor Microenvironment
2.
Small ; 14(49): e1802904, 2018 12.
Article in English | MEDLINE | ID: mdl-30358916

ABSTRACT

Multifunctional nanotheranostic agents are of particular importance in the field of precise nanomedicine. However, a critical challenge remains in the rational fabrication of monodisperse multicomponent nanoparticles with enhanced multifunctional characteristics for efficient cancer theranostics. Here, a rational and facile synthesis of monodisperse Gd2 O3 /Bi2 S3 hybrid nanodots (Gd/Bi-NDs) is demonstrated as a multifunctional nanotheranostic agent using a albumin nanoreactor for computed tomography (CT)/photoacoustics (PA)/magnetic resonance (MR) imaging and simultaneous photothermal tumor ablation. Two nanoprecipitation reactions in one albumin nanoreactor are simultaneously conducted to generate ultrasmall Gd/Bi-NDs with both orthorhombic Bi2 S3 and cubic Gd2 O3 nanostructures. Their hybrid nanostructure generates distinctly enhanced longitudinal relaxivity in the spatially confined albumin nanocage as compared to monocomponent Gd2 O3 nanodots. Moreover, such hybrid nanodots possess multiple desirable characteristics including superior photobleaching resistance, efficient cellular uptake, preferable tumor accumulation, good in vivo clearance, and negligible acute toxicity, thereby leading to complementary PA/CT/MR imaging with spatial and anatomic characteristics, as well as effective photothermal tumor ablation without regrowth. These results represent a promising approach to fabricate monodisperse multicomponent nanotheranostic agents for efficient cancer theranostics.


Subject(s)
Multimodal Imaging/methods , Nanoparticles/chemistry , Cell Line, Tumor , Humans , Phototherapy/methods , Theranostic Nanomedicine/methods
3.
Theranostics ; 7(3): 764-774, 2017.
Article in English | MEDLINE | ID: mdl-28255365

ABSTRACT

Protein nanoparticles as nanocarriers are of particular interest in the field of cancer therapy. Nevertheless, so far a facile fabrication of theranostic protein nanoparticles have been explored with limited success for cancer imaging and therapy. In this work, we demonstrate the controllable synthesis of size-tunable Gd2O3@albumin conjugating photosensitizer (PS) (GA-NPs) using hollow albumin as the nanoreactor for magnetic resonance imaging (MRI)-guided photo-induced therapy. The growth of Gd2O3 nanocrystals within the hollow nanoreactors is well regulated through reaction time, and a typical PS (e.g. chlorin e6) is further conjugated with the protein corona of the nanoreactor through facile chemical coupling, followed by the formation of theranostic GA-NPs. GA-NPs exhibit good longitudinal relaxivity, ideal photostability, enhanced cellular uptakes, and preferable size-dependent tumor accumulation. Moreover, GA-NPs effectively generate remarkable photothermal effect, intracellular reactive oxygen species from Ce6, and subsequent cytoplasmic drug translocation, thereby leading to severe synergistic photothermal and photodynamic cell damages. Consequently, GA-NPs exhibit an in vivo size-dependent MRI capacity with enhanced imaging contrast for effective tumor localization, and also generate a potent synergistic photodynamic therapy/photothermal therapy efficacy under irradiation owing to their enhanced tumor accumulation and strong photo-induced cytotoxicity. These results suggest that GA-NPs can act as a promising theranostic protein nanoplatform for cancer imaging and photo-induced therapy.


Subject(s)
Albumins/administration & dosage , Gadolinium/administration & dosage , Magnetic Resonance Imaging/methods , Nanoparticles/administration & dosage , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Porphyrins/administration & dosage , Animals , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Survival/drug effects , Chlorophyllides , Hyperthermia, Induced/methods , Mice , Theranostic Nanomedicine/methods , Treatment Outcome
5.
Theranostics ; 4(4): 399-411, 2014.
Article in English | MEDLINE | ID: mdl-24578723

ABSTRACT

It is highly desirable to develop theranostic nanoparticles for achieving cancer imaging with enhanced contrast and simultaneously multimodal synergistic therapy. Herein, we report a theranostic micelle system hierarchically assembling cyanine dye (indocyanine green) and chemotherapeutic compound (doxorubicin) (I/D-Micelles) as a novel theranostic platform with high drug loading, good stability and enhanced cellular uptake via clathrin-mediated endocytosis. I/D-Micelles exhibit the multiple functionalities including near-infrared fluorescence (NIRF), hyperthermia and intracellular singlet oxygen from indocyanine green, and simultaneous cytotoxicity from doxorubicin. Upon photoirradiation, I/D-Micelles can induce NIRF imaging, acute photothermal therapy via hyperthermia and simultaneous synergistic chemotherapy via singlet oxygen-triggered disruption of lysosomal membranes, eventually leading to enhanced NIRF imaging and superior tumor eradication without any re-growth. Our results suggest that the hierarchical micelles can act as a superior theranostic platform for cancer imaging and multimodal synergistic therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Hyperthermia, Induced/methods , Micelles , Phototherapy/methods , Singlet Oxygen/therapeutic use , Animals , Cell Line/drug effects , Combined Modality Therapy , Diagnostic Imaging/methods , Doxorubicin/pharmacology , Female , Fluorescence , Humans , Indocyanine Green/chemistry , Lysosomes/drug effects , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/therapy , Rabbits , Tissue Distribution , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL