Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 313-319, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38538363

ABSTRACT

Septic cardiomyopathy (SCM) has a high incidence and complex pathogenesis, which can significantly increase the mortality of sepsis patients. NOD-like receptor protein 3 (NLRP3) inflammatory corpuscles play an important role in the pathogenesis of SCM. Mitochondrial dysfunction in cardiomyocytes is also one of the important pathogenesis of SCM. Activation of NLRP3 inflammatory corpuscles is closely related to mitochondrial dysfunction. The study of interaction mechanism between the two is helpful to find a new therapeutic scheme for SCM. This article reviews the interaction between NLRP3 inflammatory corpuscles and mitochondrial dysfunction in the pathogenesis of SCM, as well as the related mechanisms of traditional Chinese medicine (TCM) prevention and treatment of SCM, providing theoretical reference for further exploring therapeutic targets for SCM.


Subject(s)
Cardiomyopathies , Mitochondrial Diseases , Sepsis , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , Cardiomyopathies/etiology , Sepsis/metabolism , Mitochondrial Diseases/complications , Mitochondrial Diseases/metabolism
2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338901

ABSTRACT

Neurodegenerative diseases involve the progressive dysfunction and loss of neurons in the central nervous system and thus present a significant challenge due to the absence of effective therapies for halting or reversing their progression. Based on the characteristics of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD), which have prolonged incubation periods and protracted courses, exploring non-invasive physical therapy methods is essential for alleviating such diseases and ensuring that patients have an improved quality of life. Photobiomodulation (PBM) uses red and infrared light for therapeutic benefits and functions by stimulating, healing, regenerating, and protecting organizations at risk of injury, degradation, or death. Over the last two decades, PBM has gained widespread recognition as a non-invasive physical therapy method, showing efficacy in pain relief, anti-inflammatory responses, and tissue regeneration. Its application has expanded into the fields of neurology and psychiatry, where extensive research has been conducted. This paper presents a review and evaluation of studies investigating PBM in neurodegenerative diseases, with a specific emphasis on recent applications in AD and PD treatment for both animal and human subjects. Molecular mechanisms related to neuron damage and cognitive impairment are scrutinized, offering valuable insights into PBM's potential as a non-invasive therapeutic strategy.


Subject(s)
Alzheimer Disease , Low-Level Light Therapy , Neurodegenerative Diseases , Parkinson Disease , Animals , Humans , Neurodegenerative Diseases/radiotherapy , Low-Level Light Therapy/methods , Quality of Life , Alzheimer Disease/drug therapy , Parkinson Disease/drug therapy
3.
Sci Total Environ ; 914: 169851, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185165

ABSTRACT

The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.


Subject(s)
Metals, Rare Earth , Micromonospora , Water Pollutants, Chemical , Phosphorus , Biomineralization , Minerals , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
4.
Ecotoxicol Environ Saf ; 272: 115850, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38290310

ABSTRACT

Polystyrene microplastics (MPs) are persistent environmental pollutants commonly encountered in daily human life. Numerous studies have demonstrated their ability to induce liver damage, including oxidative stress, inflammation, and lipid accumulation. However, limited information exists regarding preventive measures against this issue. In our study, we investigated the potential preventive role of selenium nanoparticles (YC-3-SeNPs) derived from Yak-derived Bacillus cereus, a novel nanobiomaterial known for its antioxidant properties and lipid metabolism regulation. Using transcriptomic and metabolomic analyses, we identified key genes and metabolites associated with oxidative stress and lipid metabolism imbalance induced by MPs. Upregulated genes (Scd1, Fasn, Irs2, and Lpin) and elevated levels of arachidonic and palmitic acid accumulation were observed in MP-exposed mice, but not in those exposed to SeNPs. Further experiments confirmed that SeNPs significantly attenuated liver lipid accumulation and degeneration caused by MPs. Histological results and pathway screening validated our findings, revealing that MPs suppressed the Pparα pathway and Nrf2 pathway, whereas SeNPs activated both pathways. These findings suggest that MPs may contribute to the development of nonalcoholic fatty liver disease (NAFLD), while SeNPs hold promise as a future nanobio-product for its prevention.


Subject(s)
Non-alcoholic Fatty Liver Disease , Selenium , Mice , Humans , Animals , Selenium/pharmacology , Non-alcoholic Fatty Liver Disease/chemically induced , Plastics , Microplastics/toxicity , Oxidative Stress , Lipids
5.
Ann Bot ; 133(3): 483-494, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38198749

ABSTRACT

BACKGROUND AND AIMS: Soils in south-western Australia are severely phosphorus (P) impoverished, and plants in this region have evolved a variety of P-acquisition strategies. Phosphorus acquisition by Adenanthos cygnorum (Proteaceae) is facilitated by P-mobilizing neighbours which allows it to extend its range of habitats. However, we do not know if other Adenanthos species also exhibit a strategy based on facilitation for P acquisition in P-impoverished environments. METHODS: We collected leaf and soil samples of Adenanthosbarbiger, A. cuneatus, A.meisneri,A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) growing in their natural habitats at different locations within the severely P-limited megadiverse environment of south-western Australia. Hydroponic experiments were conducted to collect the carboxylates exuded by cluster roots. Pot experiments in soil were carried out to measure rhizosheath phosphatase activity. KEY RESULTS: We found no evidence for facilitation of P uptake in any of the studied Adenanthos species. Like most Proteaceae, A. cuneatus, A. meisneri, A. obovatus, A. sericeus and Adenanthos sp. Whicher Range (G.J. Keighery 9736) expressed P-mining strategies, including the formation of cluster roots. Cluster roots of A. obovatus were less effective than those of the other four Adenanthos species. In contrast to what is known for most Proteaceae, we found no cluster roots for A. barbiger. This species probably expressed a post-fire P-acquisition strategy. All Adenanthos species used P highly efficiently for photosynthesis, like other Proteaceae in similar natural habitats. CONCLUSIONS: Adenanthos is the first genus of Proteaceae found to express multiple P-acquisition strategies. The diversity of P-acquisition strategies in these Proteaceae, coupled with similarly diverse strategies in Fabaceae and Myrtaceae, demonstrates that caution is needed in making family- or genus-wide extrapolations about the strategies exhibited in severely P-impoverished megadiverse ecosystems.


Subject(s)
Phosphorus , Proteaceae , Phosphorus/analysis , Ecosystem , Western Australia , Plant Roots/chemistry , Soil
6.
Gene ; 889: 147808, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37722611

ABSTRACT

Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.


Subject(s)
Perilla frutescens , Perilla , Perilla frutescens/genetics , Perilla frutescens/metabolism , Perilla/genetics , Perilla/metabolism , Transcriptome , Gene Expression Profiling , Seeds/genetics , Multigene Family , Plant Oils , Lipids , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Phylogeny
7.
Chemosphere ; 330: 138763, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094722

ABSTRACT

Oil pollution in intertidal zones is an important environmental issue that has serious adverse effects on coastal ecosystems. This study investigated the efficacy of a bacterial consortium constructed from petroleum degraders and biosurfactant producers in the bioremediation of oil-polluted sediment. Inoculation of the constructed consortium significantly enhanced the removal of C8-C40n-alkanes (80.2 ± 2.8% removal efficiency) and aromatic compounds (34.4 ± 10.8% removal efficiency) within 10 weeks. The consortium played dual functions of petroleum degradation and biosurfactant production, greatly improving microbial growth and metabolic activities. Real-time quantitative polymerase chain reaction (PCR) showed that the consortium markedly increased the proportions of indigenous alkane-degrading populations (up to 3.88-times higher than that of the control treatment). Microbial community analysis demonstrated that the exogenous consortium activated the degradation functions of indigenous microflora and promoted synergistic cooperation among microorganisms. Our findings indicated that supplementation of a bacterial consortium of petroleum degraders and biosurfactant producers is a promising bioremediation strategy for oil-polluted sediments.


Subject(s)
Microbiota , Petroleum Pollution , Petroleum , Petroleum/analysis , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Alkanes/metabolism , Petroleum Pollution/analysis , Hydrocarbons/metabolism
8.
Eur J Drug Metab Pharmacokinet ; 48(3): 301-310, 2023 May.
Article in English | MEDLINE | ID: mdl-37079249

ABSTRACT

BACKGROUND AND OBJECTIVE: Taohong Siwu Decoction (TSD) is a classic traditional Chinese medicine (TCM) compound with pharmacological effects such as vasodilation and hypolipidemia. Paeoniflorin (PF) is one of the active ingredients of TSD. The aim of this study was to evaluate the pharmacokinetics of PF in herbal extracts and their purified forms in rats. METHOD: A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) method for the determination of PF in rat plasma was developed. Rats were divided into three groups, and given PF solution, water extract of white peony root (WPR), or TSD by gavage. At different predetermined timepoints after gavage, blood was collected from the orbital vein. The pharmacokinetic parameters of PF in the plasma of rats in the three groups was determined. RESULTS: The pharmacokinetic studies showed that the time to reach maximum concentration (Tmax) of PF in the purified forms group was relatively high, while the half-lives (T½) of PF in the TSD and WPR groups were longer. Among the three groups, PF in the purified forms group had the maximum area under the concentration-time curve (AUC0-t = 732.997 µg/L·h) and the largest maximum concentration (Cmax = 313.460 µg/L), which showed a significant difference compared with the TSD group (P < 0.05). Compared with the purified group, the clearance (CLz/F = 86.004 L/h/kg) and the apparent volume of distribution (Vz/F = 254.787 L/kg) of PF in the TSD group increased significantly (P < 0.05). CONCLUSIONS: A highly specific, sensitive, and rapid HPLC-MS-MS method was developed and applied for the determination of PF in rat plasma. It was found that TSD and WPR can prolong the action time of paeoniflorin in the body.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Administration, Oral
9.
J Anim Physiol Anim Nutr (Berl) ; 107(4): 1035-1042, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36591812

ABSTRACT

The aim of this study was to evaluate the effects of fermented broccoli stem and leaf residue (FBR) on the growth performance, serum biochemical characteristics, and meat quality of growing pigs. A total of 72 growing pigs (Durox × Landrace × Yorkshire) were subjected to three dietary treatments with different levels (0%, 5% and 10%) of FBR with three replicates for an experimental period of 70 day. The average daily feed intake of growing pigs was higher (p < 0.05) in the 5% FBR treatment compared with the control group (0% FBR). The serum urea nitrogen content in growing pigs was lower (p < 0.05) in the 5% and 10% FBR treatments. The lightness value was higher (p < 0.05) in the longissimus dorsi muscle of pigs fed 5% and 10% FBR diets compared with the control group, and the yellowness value was increased in pigs fed the 10% FBR diet compared with pigs fed the control diet. Overall, the beneficial effects of FBR supplementation on serum biochemical parameters, and meat colour without undermining the growth performance indicate that up to 10% FBR could be used in diets to enhance the production of growing pigs.


Subject(s)
Brassica , Dietary Supplements , Swine , Animals , Diet/veterinary , Meat/analysis , Plant Leaves , Animal Feed/analysis
10.
J Neuroinflammation ; 19(1): 253, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36217178

ABSTRACT

BACKGROUND: The immune system has been implicated in synaptic plasticity, inflammation, and the progression of Alzheimer's disease (AD). However, there were few studies on improving the niche microenvironment of neural stem cells (NSCs) in the brain of AD to promote adult hippocampal neurogenesis (AHN) by regulating the function of non-parenchymal immune cells. METHODS: The lymph nodes of amyloid precursor protein/presenilin 1 (APP/PS1) and 3xTg (APP/PS1/tau) mouse models of AD were treated with photobiomodulation therapy (PBMT) for 10 J/cm2 per day for 1 month (10 min for each day), T lymphocytes isolated from these two AD models were treated with PBMT for 2 J/cm2 (5 min for each time). The NSCs isolated from hippocampus of these two AD models at E14, and the cells were co-cultivated with PBMT-treated T lymphocyte conditioned medium for NSCs differentiation. RESULTS: Our results showed that PBMT treatment could promote AHN and reverse cognitive deficits in AD mouse model. The expression of interferon-γ (IFN-γ) and interleukin-10 (IL-10) was upregulated in the brain of these two AD models after PBMT treated, which was induced by the activation of Janus kinase 2 (JAK2)-mediated signal transducer and activator of transcription 4 (STAT4)/STAT5 signaling pathway in CD4+ T cells. In addition, elevated CD4+ T cell levels and upregulated transforming growth factor-ß1 (TGFß1)/insulin-like growth factors-1 (IGF-1)/brain-derived neurotrophic factor (BDNF) protein expression levels were also detected in the brain. More importantly, co-cultivated the PBMT-treated T lymphocyte conditioned medium with NSCs derived from these two AD models was shown to promote NSCs differentiation, which was reflected in the upregulation of both neuronal class-III ß-tubulin (Tuj1) and postsynaptic density protein 95 (PSD95), but the effects of PBMT was blocked by reactive oxygen species (ROS) scavenger or JAK2 inhibitor. CONCLUSION: Our research suggests that PBMT exerts a beneficial neurogenesis modulatory effect through activating the JAK2/STAT4/STAT5 signaling pathway to promote the expression of IFN-γ/IL-10 in non-parenchymal CD4+ T cells, induction of improvement of brain microenvironmental conditions and alleviation of cognitive deficits in APP/PS1 and 3xTg-AD mouse models.


Subject(s)
Alzheimer Disease , Low-Level Light Therapy , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cognition , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Insulin-Like Growth Factor I/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Janus Kinase 2/metabolism , Mice , Mice, Transgenic , Neurogenesis/physiology , Presenilin-1/genetics , Presenilin-1/metabolism , Reactive Oxygen Species/metabolism , STAT4 Transcription Factor/metabolism , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/pharmacology , T-Lymphocytes/metabolism , Transforming Growth Factor beta1/metabolism , Tubulin/metabolism
11.
Complement Ther Med ; 69: 102848, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35779783

ABSTRACT

AIMS: Shenghua Decoction (SHD) is a well-known classic herbal formula documented in traditional Chinese medicine (TCM) that has been widely applied during the postpartum period in Chinese communities for several years. We conducted this systematic review and meta-analysis to explore the influence of SHD as an adjuvant treatment for early medical abortion using a combination of mifepristone followed by misoprostol. METHODS: This systematic review and meta-analysis was reported using 2020 PRISMA guidelines. Eight databases were searched from their establishment to February 28, 2022, for randomized controlled trials (RCTs): PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, the Chinese BioMedical database, the Chinese Scientific Journal Database, and the Wanfang database. The Grading of Recommendations Assessment, Development, and Evaluation estimated the quality of evidence. RESULTS: Sixteen RCTs involving 3016 patients were included in the meta-analysis. Overall, compared with no treatment as the control group after early medical abortion, patients treated with SHD were associated with a higher complete abortion rate (RR: 1.14; 95% CI: 1.10 - 1.18; P < 0.01, I2 = 26%, moderate quality), lower incomplete abortion rate (RR: 0.31; 95% CI: 0.24 - 0.41; P < 0.01, I2 = 0%, moderate quality), and lower viable pregnancy rate (RR: 0.26; 95% CI: 0.11 - 0.62; P < 0.01, I2 = 0%, moderate quality). Additionally, SHD supplementation was associated with reduced the induction-abortion time, duration of vaginal bleeding and menstrual recovery time. CONCLUSION: Our findings suggest that SHD supplementation may be beneficial for women seeking a medical abortion before the 7-week gestational period and no adverse events in the experimental group were reported. However, the methodological quality of the included RCTs was unsatisfactory, and therefore it is necessary to further verify the effectiveness of SHD using standardized studies of rigorous design.


Subject(s)
Abortion, Induced , Dietary Supplements , Drugs, Chinese Herbal , Dietary Supplements/adverse effects , Drugs, Chinese Herbal/adverse effects , Female , Humans , Pregnancy , Randomized Controlled Trials as Topic
12.
Dalton Trans ; 51(26): 10240-10248, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35748510

ABSTRACT

The report on phosphaphthalimide (1), the phosphorus analogue of the phthalimide anion, dates back to forty years ago. However, the presence of π-delocalization between two-coordinated phosphorus centre and neighbouring carbonyl groups in 1 has been underestimated. Herein, sodium salts of 1 were obtained through a convenient procedure on a relatively large scale with a modified procedure. Reactivity studies demonstrated that 1 is indeed a good electrophile and the essential role of π-delocalization in 1 controlling its ambident properties. NBO analysis revealed the p-π conjugation and p-σ* hyperconjugation in 1 affecting its bond lengths in opposite ways.


Subject(s)
Phosphorus
13.
Phytomedicine ; 101: 154070, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35523114

ABSTRACT

BACKGROUND: Asperuloside is a natural compound extracted from various herbs with several bioactivities. Its effects on anti-inflammation and anti-tumor indicated that asperuloside might prevent colorectal cancer developing from inflammatory bowel diseases (IBD). But there were few reports about the efficacy and mechanism of asperuloside on improving colorectal cancer. It has been reported that vitamin D receptor (VDR) could regulate the expression of SMAD3. In previous study, asperuloside could significantly improve the expression of VDR and reduced Smad3 mRNA in IEC-6 cell. PURPOSE: The present study was aimed to investigate the potential mechanism of asperuloside on inhibiting epithelial-mesenchymal transition (EMT) in colitis associated cancer. STUDY DESIGN: First, in LPS-injured IEC-6 cell, asperuloside inhibited phosphorylated p65 (p-p65) level, improved VDR expression and reduced Smad3 mRNA. Second, we wonder the relationship between VDR signaling and nucleus factor-kappaB (NF-κB) signaling during asperuloside on reducing Smad3 mRNA. And then, the effect of asperuloside on inhibiting EMT development through VDR/Smad3 was investigated. Finally, we testified the effect of asperuloside on protecting against colitis associated cancer (CAC) by inhibiting EMT development through VDR/Smad3. METHODS: Pyrrolidinedithiocarbamate ammonium (PDTC) was used for established NF-κB-inhibited IEC-6 cell. This cell was applied for investigating the relationship between NF-κB and VDR of asperuloside on inhibiting Smad3. VDR-inhibited cell was established by small interfering RNA (siRNA) of VDR and was employed to investigate the role of VDR for asperuloside on decreasing Smad3. Transforming growth factor ß1 (TGFß1) was used for inducing EMT/fibrosis in IEC-6 cell. TGFß1-stimulated cell was used for testifying the effect of asperuloside on inhibiting EMT development. AOM/DSS-induced CAC was established to investigate the effect of asperuloside on suppressing cancer development. RESULTS: Asperuloside inhibited the level of p-p65 which was up-regulated by LPS. Asperuloside could up-regulate VDR signaling and reduce Smad3 mRNA in NF-κB-knockdown IEC-6 cells. Asperuloside failed to reduce Smad3 mRNA due to VDR knockdown, which implied that asperuloside might down-regulate Smad3 mRNA dependently on activation of VDR signaling and independently on inhibiting NF-κB signaling. Asperuloside exhibited significant prevention of EMT development in TGFß1-induced IEC-6 cell (EMT cell) and mice CAC. Asperuloside reduced the transform of epithelial phenotype into motile mesenchymal phenotype in EMT cell along with decreasing levels of EMT markers by inhibiting Smad3 mRNA via activation of VDR. In mice with CAC, expression of VDR in colon was improved by asperuloside. Symptoms of colitis, tumor number and tumor size were significantly inhibited by asperuloside. Suppressed EMT development was determined by reduced α-SMA expression and decreased mRNAs of several EMT markers. CONCLUSION: Asperuloside might prevent CAC through inhibiting EMT development via regulation of VDR/Smad3 pathway.


Subject(s)
Colitis-Associated Neoplasms , Epithelial-Mesenchymal Transition , Animals , Cyclopentane Monoterpenes , Glucosides , Lipopolysaccharides/pharmacology , Mice , NF-kappa B/metabolism , Pyrans , RNA, Messenger , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Transforming Growth Factor beta1/metabolism
14.
Macromol Rapid Commun ; 43(14): e2100918, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35106866

ABSTRACT

Drugs are frequently used for only chemotherapy that ignores their photophysical properties that potentially endow them with other therapeutic potency. Additionally, current photothermal-chemotherapy replies on the codelivery of drugs and photothermal agents, but their spatiotemporal delivery and precise release is unsatisfactory. Herein, label-free doxorubicin (DOX) polyprodrug nanoparticles (DPNs) are formulated from disulfide bonds-tethered DOX polyprodrug amphiphiles (PDMA-b-PDOXM). Benefiting from boosted nonradiative decay of high-density DOX, significant fluorescence quenching and photothermal effects are observed for DPNs without common photothermal agents. Upon cellular uptake and laser irradiation, the heat can promote lysosomal escape of DPNs into reductive cytosol, whereupon free DOX is released to activate chemotherapy and fluorescence, achieving rational cascade photothermal-chemotherapy. The current label-free polyprodrug strategy can make full use of drugs; it provides an alternative insight to extend the therapeutic domain of drugs.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Neoplasms , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Phototherapy
15.
Front Behav Neurosci ; 15: 747733, 2021.
Article in English | MEDLINE | ID: mdl-34803624

ABSTRACT

Tai Chi Chuan (TCC) is assumed to exert beneficial effects on functional brain activity and cognitive function in elders. Until now, empirical evidence of TCC induced intra-regional spontaneous neural activity and inhibitory control remains inconclusive. Whether the effect of TCC is better than that of other aerobic exercises is still unknown, and the role of TCC in younger adults is not yet fully understood. Here we used resting-state functional MRI (fMRI) to investigate the effects of 8-week TCC (n = 12) and brisk walking (BW, n = 12) on inhibitory control and fractional amplitude of low-frequency fluctuations (fALFF). The results found that TCC had significant effects on inhibitory control performance and spontaneous neural activity that were associated with significantly increased fALFF in the left medial superior frontal gyrus (Cohen's d = 1.533) and the right fusiform gyrus (Cohen's d = 1.436) and decreased fALFF in the right dorsolateral superior frontal gyrus (Cohen's d = 1.405) and the right paracentral lobule (Cohen's d = 1.132).TCC exhibited stronger effects on spontaneous neural activity than the BW condition, as reflected in significantly increased fALFF in the left medial superior frontal gyrus (Cohen's d = 0.862). There was a significant positive correlation between the increase in fALFF in the left medial superior frontal gyrus and the enhancement in inhibitory control performance. The change in fALFF in the left medial superior frontal gyrus was able to explain the change in inhibitory control performance induced by TCC. In conclusion, our results indicated that 8 weeks of TCC intervention could improve processing efficiency related to inhibitory control and alter spontaneous neural activity in young adults, and TCC had potential advantages over BW intervention for optimizing spontaneous neural activity.

16.
Cancer Lett ; 523: 57-71, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34563641

ABSTRACT

High fluence low-level laser (HF-LLL), a mitochondria-targeted tumour phototherapy, results in oxidative damage and apoptosis of tumour cells, as well as damage to normal tissue. To circumvent this, the therapeutic effect of low fluence LLL (LFL), a non-invasive and drug-free therapeutic strategy, was identified for tumours and the underlying molecular mechanisms were investigated. We observed that LFL enhanced antigen-specific immune response of macrophages and dendritic cells by upregulating MHC class II, which was induced by mitochondrial reactive oxygen species (ROS)-activated signalling, suppressing tumour growth in both CD11c-DTR and C57BL/6 mice. Mechanistically, LFL upregulated MHC class II in an MHC class II transactivator (CIITA)-dependent manner. LFL-activated protein kinase C (PKC) promoted the nuclear translocation of CIITA, as inhibition of PKC attenuated the DNA-binding efficiency of CIITA to MHC class II promoter. CIITA mRNA and protein expression also improved after LFL treatment, characterised by direct binding of Src and STAT1, and subsequent activation of STAT1. Notably, scavenging of ROS downregulated LFL-induced Src and PKC activation and antagonised the effects of LFL treatment. Thus, LFL treatment altered the adaptive immune response via the mitochondrial ROS-activated signalling pathway to control the progress of neoplastic disease.


Subject(s)
Histocompatibility Antigens Class II/immunology , Low-Level Light Therapy/methods , Neoplasms, Experimental/therapy , Protein Kinase C/physiology , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , src-Family Kinases/physiology , Active Transport, Cell Nucleus , Animals , Antigen Presentation , Dendritic Cells/physiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Nuclear Proteins/physiology , STAT1 Transcription Factor/physiology , Trans-Activators/physiology
17.
Nat Commun ; 12(1): 5508, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535649

ABSTRACT

Perilla is a young allotetraploid Lamiaceae species widely used in East Asia as herb and oil plant. Here, we report the high-quality, chromosome-scale genomes of the tetraploid (Perilla frutescens) and the AA diploid progenitor (Perilla citriodora). Comparative analyses suggest post Neolithic allotetraploidization within 10,000 years, and nucleotide mutation in tetraploid is 10% more than in diploid, both of which are dominated by G:C → A:T transitions. Incipient diploidization is characterized by balanced swaps of homeologous segments, and subsequent homeologous exchanges are enriched towards telomeres, with excess of replacements of AA genes by fractionated BB homeologs. Population analyses suggest that the crispa lines are close to the nascent tetraploid, and involvement of acyl-CoA: lysophosphatidylcholine acyltransferase gene for high α-linolenic acid content of seed oil is revealed by GWAS. These resources and findings provide insights into incipient diploidization and basis for breeding improvement of this medicinal plant.


Subject(s)
Diploidy , Perilla/genetics , Plants, Medicinal/genetics , Base Sequence , Biological Evolution , Genes, Plant , Genetics, Population , Genome, Plant , Genome-Wide Association Study , Nucleotides/genetics , Pigmentation/genetics , Plant Leaves/genetics , Polyploidy
18.
Front Psychol ; 12: 665419, 2021.
Article in English | MEDLINE | ID: mdl-34267705

ABSTRACT

Objective: This study used resting-state functional magnetic resonance imaging to investigate the effects of 8 weeks of Tai Chi Chuan and general aerobic exercise on the topological parameters of brain functional networks, explored the advantages of Tai Chi Chuan for improving functional network plasticity and cognitive flexibility, and examined how changes in topological attributes of brain functional networks relate to cognitive flexibility. Methods: Thirty-six healthy adults were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking), and control groups. All of the subjects underwent fMRI and behavioral assessment before and after the exercise intervention. Results: Tai Chi Chuan exercise significantly enhanced the clustering coefficient and local efficiency compared with general aerobic exercise. Regarding the nodal properties, Tai Chi Chuan significantly enhanced the nodal clustering coefficient of the bilateral olfactory cortex and left thalamus, significantly reduced the nodal clustering coefficient of the left inferior temporal gyrus, significantly improved the nodal efficiency of the right precuneus and bilateral posterior cingulate gyrus, and significantly improved the nodal local efficiency of the left thalamus and right olfactory cortex. Furthermore, the behavioral performance results demonstrated that cognitive flexibility was enhanced by Tai Chi Chuan. The change in the nodal clustering coefficient in the left thalamus induced by Tai Chi Chuan was a significant predictor of cognitive flexibility. Conclusion: These findings demonstrated that Tai Chi Chuan could promote brain functional specialization. Brain functional specialization enhanced by Tai Chi Chuan exercise was a predictor of greater cognitive flexibility.

19.
Stem Cell Reports ; 16(6): 1568-1583, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34019818

ABSTRACT

Photobiomodulation therapy (PBMT) has shown encouraging results in the treatment of hair loss. However, the mechanism by which PBMT controls cell behavior to coordinate hair cycle is unclear. Here, PBMT is found to drive quiescent hair follicle stem cell (HFSC) activation and alleviate hair follicle atrophy. Mechanistically, PBMT triggers a new hair cycle by upregulating ß-CATENIN expression in HFSCs. Loss of ß-Catenin (Ctnnb1) in HFSCs blocked PBMT-induced hair regeneration. Additionally, we show PBMT-induced reactive oxygen species (ROS) activate the PI3K/AKT/GSK-3ß signaling pathway to inhibit proteasome degradation of ß-CATENIN in HFSCs. Furthermore, PBMT promotes the expression and secretion of WNTs in skin-derived precursors (SKPs) to further activate the ß-CATENIN signal in HFSCs. By contrast, eliminating ROS or inhibiting WNT secretion attenuates the activation of HFSCs triggered by PBMT. Collectively, our work suggests that PBMT promotes hair regeneration through synergetic activation of ß-CATENIN in HFSCs by ROS and paracrine WNTs by SKPs.


Subject(s)
Alopecia/therapy , Hair Follicle/metabolism , Low-Level Light Therapy/methods , Reactive Oxygen Species/metabolism , Stem Cells/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Female , Gene Expression Regulation , Gene Knockout Techniques/methods , Glycogen Synthase Kinase 3 beta/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Regeneration
20.
J Cell Mol Med ; 25(11): 5238-5249, 2021 06.
Article in English | MEDLINE | ID: mdl-33951300

ABSTRACT

Atherosclerosis is a chronic inflammatory disease related to a massive accumulation of cholesterol in the artery wall. Photobiomodulation therapy (PBMT) has been reported to possess cardioprotective effects but has no consensus on the underlying mechanisms. Here, we aimed to investigate whether PBMT could ameliorate atherosclerosis and explore the potential molecular mechanisms. The Apolipoprotein E (ApoE)-/- mice were fed with western diet (WD) for 18 weeks and treated with PBMT once a day in the last 10 weeks. Quantification based on Oil red O-stained aortas showed that the average plaque area decreased 8.306 ± 2.012% after PBMT (P < .05). Meanwhile, we observed that high-density lipoprotein cholesterol level in WD + PBMT mice increased from 0.309 ± 0.037 to 0.472 ± 0.038 nmol/L (P < .05) compared with WD mice. The further results suggested that PBMT could promote cholesterol efflux from lipid-loaded primary peritoneal macrophages and inhibit foam cells formation via up-regulating the ATP-binding cassette transporters A1 expression. A contributing mechanism involved in activating the phosphatidylinositol 3-kinases/protein kinase C zeta/specificity protein 1 signalling cascade. Our study outlines that PBMT has a protective role on atherosclerosis by promoting macrophages cholesterol efflux and provides a new strategy for treating atherosclerosis.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , Atherosclerosis/therapy , Cholesterol/metabolism , Low-Level Light Therapy/methods , Macrophages/metabolism , ATP Binding Cassette Transporter 1/genetics , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE
SELECTION OF CITATIONS
SEARCH DETAIL