Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Biomed Pharmacother ; 101: 608-616, 2018 May.
Article in English | MEDLINE | ID: mdl-29518607

ABSTRACT

Pedunculoside (PE) is a novel triterpene saponin extracted from the dried barks of Ilex rotunda Thunb. The present study aims to explore lipid-lowering effects of PE on hyperlipidemia rat induced by high-fat diet. The rats were fed with the high-fat diet and subjected to intragastric administration of PE at doses of 30, 15, or 5 mg/kg daily for 7 weeks. The results demonstrated that treatment with PE for 7-week dramatically decreased serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and reduced liver TC in hyperlipidemia rat induced by high-fat diet. Furthermore, the results also showed that PE modulated the expression of enzymes involved in lipid metabolism including peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FAS) and stearoyl CoA desaturase-1 (SCD-1) mRNA in liver. Besides, PE-treated group decreased weights and diameters of epididymal adipose hyperlipidemia rat. Mechanism study demonstrated that PE regulated PPAR-γ, CCAAT/Enhancer-binding Protein α (C/EBPα)、and SREBP-1 expression as well as inhibited phosphorylation of AMPK in MDI (methylisobutylxanthine, dexamethasone, insulin) induced-3T3L1 cells. Molecular Docking confirmed interaction between PE with proteins involving PPAR-γ, C/EBPα and SREBP-1. In summary, these findings may support that PE is a novel lipid-lowering drug candidate.


Subject(s)
Diet, High-Fat/adverse effects , Glucose/analogs & derivatives , Hyperlipidemias/drug therapy , Ilex , Saponins/therapeutic use , Triterpenes/therapeutic use , 3T3 Cells , Animals , Binding Sites , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/therapeutic use , Glucose/isolation & purification , Glucose/metabolism , Glucose/therapeutic use , Hyperlipidemias/etiology , Hyperlipidemias/metabolism , Male , Mice , Random Allocation , Rats , Rats, Sprague-Dawley , Saponins/isolation & purification , Saponins/metabolism , Triterpenes/isolation & purification , Triterpenes/metabolism
2.
Chin J Integr Med ; 24(1): 47-55, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28741062

ABSTRACT

OBJECTIVE: To evaluate anti-melanoma effect of ethanol extract of Ilex hainanensis Merr. (IME) and elucidate its underlying mechanism. METHODS: Thirty-six tumor-bearing mice were randomized into 6 groups (n=6) as follows: model group, IME 25, 50, 100, and 200 mg/kg groups and dacarbazine (DTIC) 70 mg/kg group. The mice in the IME treatment groups were intragastrically administered with IME 25, 50, 100 or 200 mg/kg per day, respectively. The mice in the DTIC group were intraperitoneally injected with DTIC 70 mg/kg every 2 days. The drug administration was lasting for 14 days. The cell viability was evaluated by 3-(4,5-dime-thylthylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect cell cycle and apoptosis. The gene and protein expressions of nuclear factor κB-p65 (NF-κB-p65), Bcl-2, B-cell lymphomaextra large (Bcl-xL) and Bax were detected by quantitative real-time polymerase chain reaction and Western blot analyses. Caspases-3, -8, and -9 activities were detected using the colorimetric method. In addition, a B16-F10 melanoma xenograft mouse model was used to evaluate the anti-cancer activity of IME in vivo. Furthermore, a survival experiment of tumor-bearing mice was also performed to evaluate the possible toxicity of IME. RESULTS: IME significantly inhibited the proliferation of B16-F10 cells (P<0.01). Flow cytometric analysis showed that IME induced G1/S cell cycle arrest and apoptosis (both P<0.01). IME inhibited activation of NF-κB, decreased the gene and protein expressions of Bcl-2, Bcl-xL, and increased the gene and protein expressions of Bax (all P<0.01). In addition, IME induced the activation of Caspases-3, -8, and -9 in B16-F10 cells. The study in vivo showed that IME significantly reduced tumor volume (P<0.01), and the inhibitory rate came up to 68.62%. IME also induced large areas of necrosis and intra-tumoral apoptosis that correlated with a reduction in tumor volume. Survival experiment showed that treatment with IME for 14 days significantly prolonged survival time and 20% of mice in the IME 200 mg/kg group were still alive until the 50th day. Notably, IME showed no apparent side-effects during the treatment period. CONCLUSION: IME exhibited significant anti-melanoma activity in vitro and in vivo, suggesting that IME might be a promising effective candidate with lower toxic for malignant melanoma therapy.


Subject(s)
Apoptosis , Cell Cycle Checkpoints , Ethanol/chemistry , Ilex/chemistry , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Plant Extracts/therapeutic use , Animals , Apoptosis/drug effects , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , G1 Phase/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Male , Melanoma, Experimental/enzymology , Melanoma, Experimental/genetics , Mice, Inbred C57BL , Necrosis , Plant Extracts/adverse effects , Plant Extracts/pharmacology , S Phase/drug effects , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL