Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 608(7922): 336-345, 2022 08.
Article in English | MEDLINE | ID: mdl-35896751

ABSTRACT

In European and many African, Middle Eastern and southern Asian populations, lactase persistence (LP) is the most strongly selected monogenic trait to have evolved over the past 10,000 years1. Although the selection of LP and the consumption of prehistoric milk must be linked, considerable uncertainty remains concerning their spatiotemporal configuration and specific interactions2,3. Here we provide detailed distributions of milk exploitation across Europe over the past 9,000 years using around 7,000 pottery fat residues from more than 550 archaeological sites. European milk use was widespread from the Neolithic period onwards but varied spatially and temporally in intensity. Notably, LP selection varying with levels of prehistoric milk exploitation is no better at explaining LP allele frequency trajectories than uniform selection since the Neolithic period. In the UK Biobank4,5 cohort of 500,000 contemporary Europeans, LP genotype was only weakly associated with milk consumption and did not show consistent associations with improved fitness or health indicators. This suggests that other reasons for the beneficial effects of LP should be considered for its rapid frequency increase. We propose that lactase non-persistent individuals consumed milk when it became available but, under conditions of famine and/or increased pathogen exposure, this was disadvantageous, driving LP selection in prehistoric Europe. Comparison of model likelihoods indicates that population fluctuations, settlement density and wild animal exploitation-proxies for these drivers-provide better explanations of LP selection than the extent of milk exploitation. These findings offer new perspectives on prehistoric milk exploitation and LP evolution.


Subject(s)
Archaeology , Dairying , Disease , Genetics, Population , Lactase , Milk , Selection, Genetic , Animals , Animals, Wild , Biological Specimen Banks , Ceramics/history , Cohort Studies , Dairying/history , Europe/epidemiology , Europe/ethnology , Famine/statistics & numerical data , Gene Frequency , Genotype , History, Ancient , Humans , Lactase/genetics , Milk/metabolism , United Kingdom
2.
Proc Natl Acad Sci U S A ; 114(49): E10524-E10531, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29158411

ABSTRACT

We consider the long-term relationship between human demography, food production, and Holocene climate via an archaeological radiocarbon date series of unprecedented sampling density and detail. There is striking consistency in the inferred human population dynamics across different regions of Britain and Ireland during the middle and later Holocene. Major cross-regional population downturns in population coincide with episodes of more abrupt change in North Atlantic climate and witness societal responses in food procurement as visible in directly dated plants and animals, often with moves toward hardier cereals, increased pastoralism, and/or gathered resources. For the Neolithic, this evidence questions existing models of wholly endogenous demographic boom-bust. For the wider Holocene, it demonstrates that climate-related disruptions have been quasi-periodic drivers of societal and subsistence change.


Subject(s)
Agriculture/history , Climate , Food Supply/history , Food/history , Population Dynamics/history , Agriculture/methods , Animals , Archaeology , Climate Change , Diet, Paleolithic/history , History, Ancient , Humans , Ireland , Monte Carlo Method , Population Dynamics/trends , Radiometric Dating , United Kingdom
3.
Proc Natl Acad Sci U S A ; 113(35): 9751-6, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27573833

ABSTRACT

Ecosystems on the verge of major reorganization-regime shift-may exhibit declining resilience, which can be detected using a collection of generic statistical tests known as early warning signals (EWSs). This study explores whether EWSs anticipated human population collapse during the European Neolithic. It analyzes recent reconstructions of European Neolithic (8-4 kya) population trends that reveal regime shifts from a period of rapid growth following the introduction of agriculture to a period of instability and collapse. We find statistical support for EWSs in advance of population collapse. Seven of nine regional datasets exhibit increasing autocorrelation and variance leading up to collapse, suggesting that these societies began to recover from perturbation more slowly as resilience declined. We derive EWS statistics from a prehistoric population proxy based on summed archaeological radiocarbon date probability densities. We use simulation to validate our methods and show that sampling biases, atmospheric effects, radiocarbon calibration error, and taphonomic processes are unlikely to explain the observed EWS patterns. The implications of these results for understanding the dynamics of Neolithic ecosystems are discussed, and we present a general framework for analyzing societal regime shifts using EWS at large spatial and temporal scales. We suggest that our findings are consistent with an adaptive cycling model that highlights both the vulnerability and resilience of early European populations. We close by discussing the implications of the detection of EWS in human systems for archaeology and sustainability science.


Subject(s)
Agriculture/history , Archaeology/methods , Models, Statistical , Population Dynamics/history , Computer Simulation , Ecosystem , Europe , History, Ancient , Humans , Population Dynamics/statistics & numerical data , Radiometric Dating
4.
PLoS One ; 9(8): e105730, 2014.
Article in English | MEDLINE | ID: mdl-25153481

ABSTRACT

Analysis of the proportion of immature skeletons recovered from European prehistoric cemeteries has shown that the transition to agriculture after 9000 BP triggered a long-term increase in human fertility. Here we compare the largest analysis of European cemeteries to date with an independent line of evidence, the summed calibrated date probability distribution of radiocarbon dates (SCDPD) from archaeological sites. Our cemetery reanalysis confirms increased growth rates after the introduction of agriculture; the radiocarbon analysis also shows this pattern, and a significant correlation between both lines of evidence confirms the demographic validity of SCDPDs. We analyze the areal extent of Neolithic enclosures and demographic data from ethnographically known farming and foraging societies and we estimate differences in population levels at individual sites. We find little effect on the overall shape and precision of the SCDPD and we observe a small increase in the correlation with the cemetery trends. The SCDPD analysis supports the hypothesis that the transition to agriculture dramatically increased demographic growth, but it was followed within centuries by a general pattern of collapse even after accounting for higher settlement densities during the Neolithic. The study supports the unique contribution of SCDPDs as a valid demographic proxy for the demographic patterns associated with early agriculture.


Subject(s)
Archaeology , Population Dynamics/history , Agriculture/history , Cemeteries , Europe , History, Ancient , Humans , Radiometric Dating
5.
Nat Commun ; 4: 2486, 2013.
Article in English | MEDLINE | ID: mdl-24084891

ABSTRACT

Following its initial arrival in SE Europe 8,500 years ago agriculture spread throughout the continent, changing food production and consumption patterns and increasing population densities. Here we show that, in contrast to the steady population growth usually assumed, the introduction of agriculture into Europe was followed by a boom-and-bust pattern in the density of regional populations. We demonstrate that summed calibrated radiocarbon date distributions and simulation can be used to test the significance of these demographic booms and busts in the context of uncertainty in the radiocarbon date calibration curve and archaeological sampling. We report these results for Central and Northwest Europe between 8,000 and 4,000 cal. BP and investigate the relationship between these patterns and climate. However, we find no evidence to support a relationship. Our results thus suggest that the demographic patterns may have arisen from endogenous causes, although this remains speculative.


Subject(s)
Agriculture/history , Food Supply/history , Models, Statistical , Population Dynamics/history , Agriculture/trends , Archaeology , Carbon Radioisotopes , Climate , Europe , History, Ancient , Humans , Population Dynamics/statistics & numerical data
6.
Hum Biol ; 81(2-3): 339-55, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19943750

ABSTRACT

In this paper I propose that evolutionary demography and associated theory from human behavioral ecology provide a strong basis for explaining the available evidence for the patterns observed in the first agricultural settlement of Europe in the 7th-5th millennium cal. BC, linking together a variety of what have previously been disconnected observations and casting doubt on some long-standing existing models. An outline of relevant aspects of life history theory, which provides the foundation for understanding demography, is followed by a review of large-scale demographic patterns in the early Neolithic, which point to rapid population increase and a process of demic diffusion. More localized socioeconomic and demographic patterns suggesting rapid expansion to local carrying capacities and an associated growth of inequality in the earliest farming communities of central Europe (the Linear Pottery Culture, or LBK) are then outlined and shown to correspond to predictions of spatial population ecology and reproductive skew theory. Existing models of why it took so long for farming to spread to northern and northwest Europe, which explain the spread in terms of the gradual disruption of hunter-gatherer ways of life, are then questioned in light of evidence for population collapse at the end of the LBK. Finally, some broader implications of the study are presented, including the suggestion that the pattern of an initial agricultural boom followed by a bust may be relevant in other parts of the world.


Subject(s)
Biological Evolution , Cultural Evolution/history , Population Dynamics , Agriculture/history , Archaeology , Culture , Demography , Europe , History, Ancient , Humans , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL