Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 12: 621194, 2021.
Article in English | MEDLINE | ID: mdl-33995020

ABSTRACT

Objective: Velvet antler (VA; cornu cervi pantotrichum), a well-known traditional Chinese medicine, has been shown to exert cardioprotective effects. The purpose of this study was to investigate the effect of VA on heart failure (HF) caused by ischemia-reperfusion, and explore its possible mechanism from the regulation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2 alpha (SERCA2a). Methods: A rat model of HF was established by ligating the left anterior descending coronary artery of male Sprague-Dawley rats (n = 88). One week after surgery, VA (200, 400, or 800 mg/[kg day-1]) or enalapril (1 mg/[kg day-1]) was administered daily for the next 4 weeks. Heart function was detected by echocardiography and histopathological analysis. The serum BNP level was measured by ELISA, and the expression of SERCA2a, PLB, PLB-Ser16, and PKA was determined by western blotting. SERCA2a and PLB mRNA levels were determined by real-time quantitative PCR. Results: Compared with the sham group, cardiac function in the HF group, including the serum BNP level, heart mass index, myocardial collagen deposition, and left ventricular ejection fraction, was markedly reduced; however, these changes could be reversed by VA treatment. In addition, VA (200 mg/[kg·d-1]) inhibited the decrease of SERCA2a and PLB mRNA levels and SERCA2a, PLB, PLB-Ser16, and PKA protein expression and restored the activity of SERCA2a and PKA. Enalapril affected only PLB protein expression. Conclusion: VA can improve myocardial fibrosis and ventricular remodeling in rats, thereby helping to restore cardiac function. The underlying mechanism may be related to the upregulation of the expression and activation of PKA and PLB and the restoration of the expression and activity of SERCA2a.

2.
Trials ; 21(1): 12, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31907056

ABSTRACT

BACKGROUND: Worldwide, hypertension is an important public health challenge because of its high prevalence and the concomitant risks of cardiovascular disease. It induces half of the coronary heart disease and approximately two-thirds of the cerebrovascular disease burden. Vascular endothelial dysfunction has important roles in the pathophysiology of essential hypertension. Types I and II hypertension can be treated with sang-qi granules (SQG), a Chinese herbal formula. Several experimental studies on animals have shown that SQG can lower blood pressure and myocardial fibrosis by suppressing inflammatory responses. However, no standard clinical trial has confirmed this. Whether SQG can improve endothelial cell function is unknown. METHODS/DESIGN: In this randomized double-blind double-simulation controlled trial, 300 patients with stage I or II hypertension will be recruited and randomly allocated in a 1:1:1 ratio to group A (treatment with SQG and placebo instead of Losartan), group B (treatment with Losartan and placebo instead of SQG), and group C (treatment with SQG and Losartan). In this study, 10 g of SQG (or its placebo) will be administrated twice a day and 50 mg of Losartan (or its placebo) will be administrated once in the morning. The primary endpoint is the drug efficiency for each of the three groups. The secondary endpoints are the change in average systolic and diastolic blood pressure during the day and the night, the change in the rate at which blood pressure drops at night, assessment of target organ damage (heart rate variability, ankle-brachial pressure index, and pulse wave velocity), assessment of any improvement in symptoms (Hypertension Symptom Scale, syndrome integral scale in traditional Chinese medicine, Pittsburgh Sleep Quality Index Scale, Self-Rating Anxiety Scale, Self-Rating Depression Scale, and the 36-Item Short Form Health Survey), blood lipids, serum indicators of vascular function (changes in serum levels of ET-1, TXA2, NO, and PGI2), and safety indicators. DISCUSSION: This study aims to provide clinical evidence on the efficacy and safety of SQG in the treatment of hypertension. Moreover, the possible mechanism by which SQG may lower blood pressure will be explored by observing the protective effect of SQG on vascular endothelial function, as well as its effect on related clinical symptoms, risk factors, and the target organs of hypertension. TRIAL REGISTRATION: Chinese Clinical Trials Registry, ChiCTR1800016427. Registered on 1 June 2018.


Subject(s)
Antihypertensive Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Endothelium, Vascular/drug effects , Hypertension/drug therapy , Losartan/administration & dosage , Antihypertensive Agents/adverse effects , Blood Pressure/drug effects , Blood Pressure Determination , China , Double-Blind Method , Drug Administration Schedule , Drugs, Chinese Herbal/adverse effects , Endothelium, Vascular/physiopathology , Humans , Hypertension/diagnosis , Hypertension/physiopathology , Losartan/adverse effects , Placebos/administration & dosage , Placebos/adverse effects , Randomized Controlled Trials as Topic , Treatment Outcome
3.
Oxid Med Cell Longev ; 2020: 3158108, 2020.
Article in English | MEDLINE | ID: mdl-33456666

ABSTRACT

BACKGROUND/AIM: Danhong injection (DHI) is a Chinese patent drug used for relieving cardiovascular diseases. Recent studies have suggested that DNA methylation plays a pivotal role in the maintenance of cardiac fibrosis (CF) in cardiovascular diseases. This study was aimed at identifying the effect and the underlying mechanism of DHI on CF, especially the DNA methylation. METHODS: A CF murine model was established by thoracic aortic constriction (TAC). A 28-day daily treatment with or without DHI via intraperitoneal injection was carried out immediately following TAC surgery. The changes in cardiac function, pathology, and fibrosis following TAC were measured by echocardiography and immunostaining. We used methyl-seq analysis to assess the DNA methylation changes in whole genes and identified the methylation changes of two Ras signaling-related genes in TAC mice, including Ras protein activator like-1 (Rasal1) and Ras-association domain family 1 (Rassf1). Next, the methylation status and expression levels of Rasal1 and Rassf1 genes were consolidated by bisulfite sequencing, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blotting, respectively. To determine the underlying molecular mechanism, the expressions of DNA methyltransferases (DNMTs), Tet methylcytosine dioxygenase 3 (TET3), fibrosis-related genes, and the activity of Ras/ERK were measured by RT-qPCR and Western blotting. RESULTS: DHI treatment alleviated CF and significantly improved cardiac function on day 28 of TAC. The methyl-seq analysis identified 42,606 differential methylated sites (DMSs), including 19,618 hypermethylated DMSs and 22,988 hypomethylated DMSs between TAC and sham-operated mice. The enrichment analysis of these DMSs suggested that the methylated regulation of Ras signal transduction and focal adhesion-related genes would be involved in the TAC-induced CF development. The results of bisulfite sequencing revealed that the TAC-induced methylation affected the CpG site in both of Rasal1 and Rassf1 genes, and DHI treatment remarkably downregulated the promoter methylation of Rasal1 and Rassf1 in CF hearts. Furthermore, DHI treatment upregulated the expressions of Rasal1 and Rassf1, inhibited the hyperactivity of Ras/ERK, and decreased the expressions of fibrosis-related genes. Notably, we found that DHI treatment markedly downregulated the expression of DNMT3B in CF hearts, while it did not affect the expressions of DNMT1, DNMT3A, and TET3. CONCLUSION: Aberrant DNA methylation of Rasal1 and Rassf1 genes was involved in the CF development. DHI treatment alleviated CF, prevented the hypermethylation of Rasal1 and Rassf1, and downregulated DNMT3B expression in CF hearts.


Subject(s)
DNA Methylation/genetics , Drugs, Chinese Herbal/pharmacology , GTPase-Activating Proteins/genetics , Myocardium/pathology , Tumor Suppressor Proteins/genetics , Animals , Aorta, Thoracic/pathology , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Constriction, Pathologic , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Fibrosis , GTPase-Activating Proteins/metabolism , Gene Expression Regulation/drug effects , Injections , Male , Mice, Inbred C57BL , Molecular Sequence Annotation , Signal Transduction , Tumor Suppressor Proteins/metabolism , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL