Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 31(1): 266-274, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-31957404

ABSTRACT

The success of microbial enhanced oil recovery (MEOR) relies on complex microbial processes. Nevertheless, the contribution and mechanism of in-situ denitrification to microbial oil recovery remain unclear. In this study, eight denitrifying bacterial strains, designated T1, D1, D44, D46, D15, S1, S2 and S6, were isolated from the produced water of Xinjiang Oilfield, China, by a double layered plate method. The16S rDNA gene sequences of these denitrifying strains shared 100% similarity with Pseudomonas stutzeri (T1, D1, and D44), Pseudomonas putida (D46 and D15), and Pseudomonas aeruginosa (S1, S2, S6), respectively. The N2O production effects of these strains on the physical properties of crude oil were evaluated with batch experiment. Results showed that the highest total gas yield was observed with sucrose as carbon source, and the maximal concentration of N2O occurred with glycerol as carbon source. The denitrification process by these bacterial strains led to volume expansion and viscosity reduction of crude oil. Crude oil expansion rate was positively correlated with the concentration of N2O, with a correlation coefficient of 0.983, but not correlated with the volume of total gas production. Strain S1, S2, and S6 produced 530-730 mg·L-1 of surfactant using glycerol as ole carbon source, which could reduce surface tension and emulsify crude oil. However, these surfactant-producing strains produced less N2O, exhibited weaker effects on oil swelling and viscosity reduction, compared to the none-surfactant-producing denitrifying strains. Our results suggested that more attention should be paid to the ability of N2O production by denitrifying bacteria when exploiting microbial resources towards enhancing oil recovery.


Subject(s)
Petroleum , Pseudomonas stutzeri , China , Denitrification , Nitrous Oxide , Oil and Gas Fields
2.
Bioresour Technol ; 251: 295-302, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29289873

ABSTRACT

Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI24 = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications.


Subject(s)
Oil and Gas Fields , Pseudomonas aeruginosa , Petroleum , Surface Tension , Surface-Active Agents
3.
Ying Yong Sheng Tai Xue Bao ; 28(10): 3393-3402, 2017 Oct.
Article in Chinese | MEDLINE | ID: mdl-29692160

ABSTRACT

Injection of alkali, surfactant and polymer (ASP) into oil reservoir can substantially increase oil recovery compared with water-flooding strategy. However, the effects of these agents on the microbial diversity and community structure, which is important for water management and corrosion control in oil industry, are hitherto poorly understood. Here, we disclosed the microbial diversity and community structure in the produced water collected from four producing wells of an ASP-flooded oilfield at Daqing, China, using high-throughput sequencing technique. Results showed that the average pH in produced water was as high as 9.65. The microbial diversity varied from well to well, and the Shannon diversity index was between 2.00 to 3.56. The Proteobacteria (85.5%-98.3%), γ-proteobacteria (83.7%-97.8%), and alkaliphilic Nitrincola (51.8%-82.5%) were the most dominant phylogenetic taxa at the phylum, class, and genus levels, respectively. A total of 12 potentially sulfide-producing genera were detected, and the most abundant taxon was Sulfurospirillum (0.4%-7.4%). The microbial community of ASP-flooded petroleum reservoir was distinct, showing an alkaliphilic or alkalitolerant potential; a reduced diversity and more simple structure were observed compared with those of the water-flooded petroleum reservoirs that were previously reported.


Subject(s)
Petroleum , Water Microbiology , Alkalies , Bacteria , China , Phylogeny , Polymers , RNA, Ribosomal, 16S , Surface-Active Agents , Water
4.
Ying Yong Sheng Tai Xue Bao ; 27(8): 2467-2476, 2016 Aug.
Article in Chinese | MEDLINE | ID: mdl-29733133

ABSTRACT

A four-year simulated nitrogen (N) deposition experiment involving nine N gradients and two N deposition frequencies (N was added either twice yearly or monthly) was conducted in Inner Mongolian grassland, to examine the effects of frequency and intensity of N addition on pH and the contents of carbon, nitrogen and phosphorus in soil. The results indicated that the soil pH and total phosphorus content, regardless of the N addition frequency, gradually decreased with the increase of N addition intensity. By contrast, the contents of soil available nitrogen and available phosphorus showed an increasing trend, while no significant variation in dissolved organic carbon (DOC) content was observed, and the contents of soil total carbon and total nitrogen had no change. Compared with the monthly N addition, the twice-a-year N addition substantially overestimated the effects of N deposition on decreasing the soil pH and increasing the available phosphorus content, but underestimated the effects of N deposition on increasing the soil available nitrogen content, and the significant difference was found in 0-5 cm soil layer.


Subject(s)
Carbon/analysis , Grassland , Nitrogen/analysis , Phosphorus/analysis , Soil/chemistry , China , Fertilizers , Hydrogen-Ion Concentration
5.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2553-60, 2015 Aug.
Article in Chinese | MEDLINE | ID: mdl-26685621

ABSTRACT

Biosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains. The alignment of 16S rDNA sequence (99% similarity) and comparisons of cell colony morphology showed that fusant JD-3 was closer to the parental strain B. amyloliquefaciens BQ-2. The surface tension of culture broth of fusant JD-3, after 36-hour cultivation under anaerobic conditions, decreased from initially 63.0 to 32.5 mN · m(-1). The results of thin layer chromatography and infrared spectrum analysis demonstrated that the biosurfactant produced by JD-3 was lipopeptide. The surface-active lipopeptide had a low critical micelle concentration (CMC) of 90 mg · L(-1) and presented a good ability to emulsify various hydrocarbons such as crude oil, liquid paraffin, and kerosene. Strain JD-3 could utilize peptone as nitrogen source and sucrose, glucose, glycerin or other common organics as carbon sources for anaerobic lipopeptide synthesis. The subculture of fusant JD-3 showed a stable lipopeptide-producing ability even after ten serial passages. All these results indicated that fusant JD-3 holds a great potential to microbially enhance oil recovery under anoxic conditions.


Subject(s)
Bacillus/metabolism , Lipopeptides/biosynthesis , Surface-Active Agents/metabolism , Bacillus/genetics , Biodegradation, Environmental , Carbon/metabolism , Hydrocarbons/metabolism , Nitrogen/metabolism , Organisms, Genetically Modified , Petroleum/metabolism , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL