Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Pharm Pharmacol ; 76(5): 567-578, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38271051

ABSTRACT

OBJECTIVES: Accumulating evidence demonstrates that copper deficiency (CuD) is a risk factor for cardiovascular diseases, besides, fructose has been strongly linked to the development of cardiovascular diseases. However, how CuD or fructose causes cardiovascular diseases is not clearly delineated. The present study aims to investigate the mechanism of CuD or fructose on cardiac remodeling. METHODS: We established a model of CuD- or fructose-induced cardiac hypertrophy in 3-week-old male Sprague-Dawley (SD) rats by CuD diet supplemented with or without 30% fructose for 4 weeks. In vitro study was performed by treating cardiomyocytes with tetrathiomolydbate (TM) and fructose. Echocardiography, histology analysis, immunofluorescence, western blotting, and qPCR were performed. KEY FINDINGS: Our findings revealed that CuD caused noticeable cardiac hypertrophy either in the presence or absence of fructose supplement. Fructose exacerbated CuD-induced cardiac remodeling and intramyocardial lipid accumulation. Furthermore, we presented that the inhibition of autophagic flux caused by Ca2+ disturbance is the key mechanism by which CuD- or fructose-induced cardiac remodeling. The reduced expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in cardiomyocytes accounts for the elevated cytoplasmic Ca2+ concentration. CONCLUSIONS: Collectively, our study suggested that fructose aggravated CuD-induced cardiac remodeling through the blockade of autophagic flux via SERCA2a decreasing-induced Ca2+ imbalance.


Subject(s)
Cardiomegaly , Copper , Fructose , Myocytes, Cardiac , Rats, Sprague-Dawley , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Ventricular Remodeling , Animals , Fructose/adverse effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Ventricular Remodeling/drug effects , Rats , Copper/metabolism , Copper/deficiency , Cardiomegaly/metabolism , Cardiomegaly/etiology , Calcium/metabolism , Disease Models, Animal , Autophagy/drug effects
2.
J Nutr Biochem ; 119: 109402, 2023 09.
Article in English | MEDLINE | ID: mdl-37311490

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), is the most common cause of chronic liver disease, affecting 24% of the global population. Accumulating evidence demonstrates that copper deficiency (CuD) is implicated in the development of NAFLD, besides, high fructose consumption by promoting inflammation contributes to NAFLD. However, how CuD and/or fructose (Fru) causes NAFLD is not clearly delineated. The present study aims to investigate the role of CuD and/or fructose supplement on hepatic steatosis and hepatic injury. We established a CuD rat model by feeding weaning male Sprague-Dawley rats for 4 weeks with CuD diet. Fructose was supplemented in drinking water. We found the promoting role of CuD or Fructose (Fru) in the progress of NAFLD, which was aggravated by combination of the two. Furthermore, we presented the alteration of hepatic lipid profiles (including content, composition, and saturation), especially ceramide (Cer), cardiolipin (CL), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) was closely associated with CuD and/or Fru fed induced-NAFLD in rat models. In conclusion, insufficient copper intake or excessive fructose supplement resulted in adverse effects on the hepatic lipid profile, and fructose supplement causes a further hepatic injury in CuD-induced NAFLD, which illuminated a better understanding of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Rats , Male , Animals , Non-alcoholic Fatty Liver Disease/chemically induced , Fructose/adverse effects , Copper/pharmacology , Rats, Sprague-Dawley , Liver , Lipids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL