Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621973

ABSTRACT

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Subject(s)
Artemisia annua , Artemisinins , Lactones , Artemisia annua/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Plant Breeding , Artemisinins/analysis , Aldehydes
2.
Comput Struct Biotechnol J ; 23: 1106-1116, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38495554

ABSTRACT

Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.

3.
Behav Brain Res ; 465: 114958, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38485056

ABSTRACT

The lateral hypothalamic nucleus (LHy) is located in the dorsolateral hypothalamus of birds, and it is essential to many life processes. However, limited information is available about the role of LHy in mediating locomotive behaviors. In this work, we investigated the structure and function of LHy in pigeons (Columba livia) by Nissl staining, immunohistochemical (IHC) staining, insituhybridization (ISH) staining and constant current stimulation methods. The results showed that LHy appears crescent in shape, and three-dimensional coordinate value range of LHy is: A: 5.0-8.0 mm, L: 0.7-1.2 mm, D: 9.5-10.3 mm. The dopaminergic neurons in LHy were distributed in small amount and concentrated manner, while the glutamatergic neurons were distributed in a large number and uniform manner. The distribution of the above two neurons at each coronal level showed a significant positive correlation (R2 = 0.7516, P < 0.001). Our work demonstrated that LHy mainly mediates forward movement (P < 0.01) and ipsilateral lateral movement (P < 0.001), and these movements were significantly effected by electrical stimulation intensity. Our results showed that LHy can mediate the generation of directional behavior and this will provide technical support for the study of locomotor behavior regulation in birds.


Subject(s)
Columbidae , Hypothalamic Area, Lateral , Animals , Hypothalamus/physiology , Neurons
4.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5181-5194, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114108

ABSTRACT

Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.


Subject(s)
Artemisia , Gene Expression Profiling , Phylogeny , Artemisia/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Terpenes , Gene Expression Regulation, Plant
5.
Molecules ; 28(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37175203

ABSTRACT

Selenium (Se) is in great demand as a health supplement due to its superior reactivity and excellent bioavailability, despite selenium nanoparticles (SeNPs) having signs of minor toxicity. At present, the efficiency of preparing SeNPs using lactic acid bacteria is unsatisfactory. Therefore, a probiotic bacterial strain that is highly efficient at converting selenite to elemental selenium is needed. In our work, four selenite-reducing bacteria were isolated from soil samples. Strain LAB-Se2, identified as Pediococcus acidilactici DSM20284, had a reduction rate of up to 98% at ambient temperature. This strain could reduce 100 mg L-1 of selenite to elemental Se within 48 h at pH 4.5-6.0, a temperature of 30-40 °C, and a salinity of 1.0-6.5%. The produced SeNPs were purified, freeze-dried, and subsequently systematically characterised using FTIR, DSL, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. The strain was able to form spherical SeNPs, as determined by TEM. In addition, DLS analysis confirmed that SeNPs were negatively charged (-26.9 mV) with an average particle size of 239.6 nm. FTIR analysis of the SeNPs indicated proteins and polysaccharides as capping agents on the SeNPs. The SeNPs synthesised by P. acidilactici showed remarkable antibacterial activity against E. coli, B. subtilis, S. aureus, and K. pneumoniae with inhibition zones of 17.5 mm, 13.4 mm, 27.9 mm, and 16.2 mm, respectively; they also showed varied MIC values in the range of 15-120 µg mL-1. The DPPH, ABTS, and hydroxyl, and superoxide scavenging activities of the SeNPs were 70.3%, 72.8%, 95.2%, and 85.7%, respectively. The SeNPs synthesised by the probiotic Lactococcus lactis have the potential for safe use in biomedical and nutritional applications.


Subject(s)
Nanoparticles , Pediococcus acidilactici , Selenium , Selenium/chemistry , Selenious Acid/chemistry , Pediococcus acidilactici/metabolism , Escherichia coli/metabolism , Staphylococcus aureus/metabolism , Nanoparticles/chemistry
6.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36565614

ABSTRACT

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Subject(s)
Fagopyrum , Rutin , Fagopyrum/genetics , Fagopyrum/metabolism , Flavonoids/metabolism , Luciferases/metabolism , Rutin/metabolism , Two-Hybrid System Techniques
7.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6058-6065, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471930

ABSTRACT

Artemisia indica is an important medicinal plant in the Asteraceae family, but its molecular genetic information has been rarely reported. In this study, the chloroplast genome of A. indica was sequenced, assembled, and annotated by the high-throughput sequencing technology, and its sequence characteristics, repeat sequences, codon usage bias, and phylogeny were analyzed. The results showed that the length of the chloroplast genome for A. indica was 151 161 bp, which was a typical circular four-segment structure, including two inverted repeat regions(IRs), a large single-copy(LSC) region, and a small single-copy(SSC) region, with a GC content of 37.47%. A total of 132 genes were annotated, and 114 were obtained after de-duplication, including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Fifty long repeat sequences and 191 SSRs were detected in the chloroplast genome of A. indica, and SSRs were mainly single nucleotides. Codon usage bias analysis showed that leucine was the most frequently used amino acid(10.77%) in the chloroplast genome, and there were 30 codons with relative synonymous codon usage(RSCU)>1 and all ended with A/U. The phylogenetic tree constructed based on the chloroplast genomes of the 19 species from the Asteraceae family showed that A. indica and A. argyi were closest in the genetic relationship, and Artemisia species clustered into separate evolutionary branches. The results of this study are expected to provide a theoretical basis for the genetic diversity and resource conservation of Artemisia medicinal plants.


Subject(s)
Artemisia , Genome, Chloroplast , Plants, Medicinal , Phylogeny , Artemisia/genetics , Codon/genetics , Base Composition , Plants, Medicinal/genetics
8.
Front Plant Sci ; 13: 1049209, 2022.
Article in English | MEDLINE | ID: mdl-36479523

ABSTRACT

Artemisia Linn. is a large genus within the family Asteraceae that includes several important medicinal plants. Because of their similar morphology and chemical composition, traditional identification methods often fail to distinguish them. Therefore, developing an effective identification method for Artemisia species is an urgent requirement. In this study, we analyzed 15 chloroplast (cp) genomes, including 12 newly sequenced genomes, from 5 Artemisia species. The cp genomes from the five Artemisia species had a typical quadripartite structure and were highly conserved across species. They had varying lengths of 151,132-151,178 bp, and their gene content and codon preferences were similar. Mutation hotspot analysis identified four highly variable regions, which can potentially be used as molecular markers to identify Artemisia species. Phylogenetic analysis showed that the five Artemisia species investigated in this study were sister branches to each other, and individuals of each species formed a monophyletic clade. This study shows that the cp genome can provide distinguishing features to help identify closely related Artemisia species and has the potential to serve as a universal super barcode for plant identification.

9.
Zhongguo Zhong Yao Za Zhi ; 47(3): 659-667, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35178948

ABSTRACT

Artemisia Argyi Folium, a traditional Chinese medicine of important medicinal and economic value, sees increasing demand in medicinal and moxibustion product market. Screening stable and reliable reference genes for quantitative real-time PCR(qRT-PCR) is a prerequisite for the analysis of gene expression in Artemisia argyi. In this study, eight commonly used reference genes, Actin, 18s, EF-1α, GAPDH, SAND, PAL, TUA, and TUB, from the transcriptome of A. argyi, were selected as candidate genes. The expression of each gene in different tissues(roots, stems, and leaves) of A. argyi and in leaves of A. argyi after treatment with methyl jasmonate(MeJA) for different time(0, 4, 8, 12 h) was detected by qRT-PCR. Then, geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder were employed to evaluate their expression stability. The results demonstrated that Actin was the most stable reference gene in different tissues and in leaves treated with MeJA, and coming in the second was SAND. Furthermore, the expression of DXS and MCT which are involved in terpenoid backbone biosynthesis was detected in different tissues and after MeJA treatment. The results showed that the expression patterns of DXS and MCT in different tissues and under MeJA treatment calculated with Actin and SAND as internal reference genes were consistent, which validated the screening results. In conclusion, Actin is the most suitable reference gene for the analysis of gene expression in different tissues of A. argyi and after MeJA treatment. This study provides valuable information for gene expression analysis in A. argyi and lays a foundation for further research on molecular mechanism of quality formation of Artemisia Argyi Folium.


Subject(s)
Artemisia , Artemisia/genetics , Gene Expression Profiling , Genes, Plant/genetics , Plant Leaves/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Transcriptome
10.
Mitochondrial DNA B Resour ; 7(1): 74-75, 2022.
Article in English | MEDLINE | ID: mdl-34993315

ABSTRACT

Leucomeris decora is a traditional medicinal plant that is listed as an endangered species in China. Recently, L. decora has become locally rare. Here the complete chloroplast genome of L. decora was assembled and reported for the first time. Its plastome was 151,491 bp in length, including a large single-copy region (LSC; 83,155 bp), a small single-copy region (SSC; 18,216 bp), and a pair of inverted repeated regions (IRa and IRb; 25,060 bp). The overall GC content was 37.8%, and the genome contains 134 genes, including 92 protein-coding genes, 8 rRNA genes, and 34 tRNA genes. Phylogenetic analysis of thirteen representative species from the family of Asteraceae showed that L. decora is clustered into one clade with Gerbera jamesonii with high bootstrap values, indicating a close relationship between these two species.

11.
Obstet Gynecol ; 139(2): 192-201, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34991130

ABSTRACT

OBJECTIVE: To assess the efficacy of the Zishen Yutai Pill compared with placebo on live birth rates among women after fresh embryo transfer cycles. METHODS: We conducted a double-blind, multicenter, placebo-controlled, randomized trial to investigate whether administration of the Zishen Yutai Pill would improve pregnancy outcomes among women undergoing fresh embryo transfer after in vitro fertilization or intracytoplasmic sperm injection. The primary outcome was live birth rate. Secondary outcomes were rates of implantation, biochemical pregnancy, clinical pregnancy, pregnancy loss, cycle cancellation, and maternal, fetal, and neonatal complications. A total sample size of 2,265 women (1:1 in two groups) was used to detect a live birth rate difference between the Zishen Yutai Pill and placebo. Participants were enrolled and randomized to receive 5 g of the Zishen Yutai Pill or placebo orally, three times per day during the study. RESULTS: Recruitment was completed between April 2014 and June 2017, with 2,580 patients screened. Two thousand two hundred sixty-five patients were randomized: 1,131 to the Zishen Yutai Pill and 1,134 to placebo. Characteristics were similar between groups. In intention-to-treat analysis, the rates of live birth in the Zishen Yutai Pill (ZYP) group and placebo group were 26.8% and 23.0% (rate ratio [RR], 1.16; 95% CI 1.01-1.34; P=.038), respectively. The implantation rates were 36.8% and 32.6% in the ZYP and placebo groups, respectively (RR 1.13; 95% CI 1.01-1.25; P=.027). The biochemical pregnancy rate for the ZYP group was 35.5% compared with 31.1% in the placebo group (RR 1.14; 95% CI 1.02-1.28; P=.026). The rates of clinical pregnancy in the ZYP and placebo groups were 31.2% compared with 27.3%, respectively (RR 1.14; 95% CI 1.00-1.30; P=.043). There were no significant between-group differences in the rates of pregnancy loss, maternal, or neonatal complications (all P>.05). CONCLUSION: The Zishen Yutai Pill increased the rate of live birth after fresh embryo transfer compared with placebo. CLINICAL TRIAL REGISTRATION: Chictr.org.cn, Chictr-TRC-14004494.


Subject(s)
Birth Rate , Drugs, Chinese Herbal/administration & dosage , Embryo Transfer/statistics & numerical data , Fertilization in Vitro/statistics & numerical data , Adult , Double-Blind Method , Female , Humans , Pregnancy
12.
J Ethnopharmacol ; 283: 114670, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34653522

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fritillariae thunbergii Miq (FTM)exhibit versatile biological activities including the significant antitussive and expectorant activities. As a herbal medicine, the therapeutic effects of FTM may be expressed by multi-components which have complicated integration effects on multi-targets. With the time going, the different processing methods of FTM has been changed a lot. Thus,the study described the effect of processing methods to FTM and its quality. MATERIAL AND METHOD: Studies were undertaken by using UHPLC-LTQ Orbitrap MS and pharmacodynamic models. All reagents were involved of analytical grade. While a HPLC-ELSD's method has been developed and validated, a certified Quality System is conformed to ICH requirements. The experimental animals followed the animal welfare guidelines. AIM OF THE STUDY: We aimed to found the differences after the different processing methods of FTM, and to demonstrate the changes could be selected as quality control indicators, and established a method for simultaneous determination of these for quality control. RESULTS: we have previously found two new steroidal alkaloids: zhebeininoside and imperialine-3-ß-D-glucoside from the different processing methods of FTM, which is the difference between the different processing methods of FTM, mainly on the steroidal alkaloids. The activity analysis of zhebeininoside, imperialine-3-ß-D-glucoside, verticine and verticinone showed that the mouse model of cough expectorant has antitussive effect. The positive drug selected was dextromethorphan syrup. The positive group showed biological activity, but the blank group showed nothing. The model group showed illness which means that the model was effective. There are two ways of the mechanism of action of the expectorant action which can make sputum thin, reduce its viscosity, and be easy to cough up, or can accelerate the movement of mucous cilia in the respiratory tract and promote the discharge of sputum. In our study, the content of phenol red was significantly reduced in the administration group. CONCLUSIONS: To sum up, our results suggest that zhebeininoside and other three components cloud be selected as quality control indicators, and a method for simultaneous determination of zhebeininoside and other three components was established for quality control.


Subject(s)
Antitussive Agents , Cevanes , Cough , Drugs, Chinese Herbal , Fritillaria , Animals , Mice , Ammonia/toxicity , Antitussive Agents/chemistry , Antitussive Agents/standards , Antitussive Agents/therapeutic use , Cevanes/chemistry , Cough/chemically induced , Cough/drug therapy , Dextromethorphan/therapeutic use , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/standards , Drugs, Chinese Herbal/therapeutic use , Fritillaria/chemistry , Phytotherapy , Plant Stems/chemistry , Quality Control , Random Allocation
13.
Genet Mol Biol ; 45(1): e20210092, 2021.
Article in English | MEDLINE | ID: mdl-34919116

ABSTRACT

Swertia L. is a large genus in Swertiinae (Gentianaceae). In China, many Swertia species are used as traditional Tibetan medicines, known as "Zangyinchen" or "Dida". However, the phylogenetic relationships among Swertia medicinal plants and their wild relatives have remained unclear. In this study, we sequenced and assembled 16 complete chloroplast (cp) genomes of 10 Swertia species, mainly distributed in Qinghai Province, China. The results showed that these species have typical structures and characteristics of plant cp genomes. The sizes of Swertia cp genomes are ranging from 149,488 bp to 154,097 bp. Most Swertia cp genomes presented 134 genes, including 85 protein coding genes, eight rRNA genes, 37 tRNA genes, and four pseudogenes. Furthermore, the GC contents and boundaries of cp genomes are similar among Swertia species. The phylogenetic analyses indicated that Swertia is a complex polyphyletic group. In addition, positive selection was found in psaI and petL genes, indicating the possible adaptation of Qinghai Swertia species to the light environment of the Qinghai-Tibet plateau. These new cp genome data could be further investigated to develop DNA barcodes for Swertia medicinal plants and for additional systematic studies of Swertia and Swertiinae species.

14.
Nat Commun ; 12(1): 5508, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535649

ABSTRACT

Perilla is a young allotetraploid Lamiaceae species widely used in East Asia as herb and oil plant. Here, we report the high-quality, chromosome-scale genomes of the tetraploid (Perilla frutescens) and the AA diploid progenitor (Perilla citriodora). Comparative analyses suggest post Neolithic allotetraploidization within 10,000 years, and nucleotide mutation in tetraploid is 10% more than in diploid, both of which are dominated by G:C → A:T transitions. Incipient diploidization is characterized by balanced swaps of homeologous segments, and subsequent homeologous exchanges are enriched towards telomeres, with excess of replacements of AA genes by fractionated BB homeologs. Population analyses suggest that the crispa lines are close to the nascent tetraploid, and involvement of acyl-CoA: lysophosphatidylcholine acyltransferase gene for high α-linolenic acid content of seed oil is revealed by GWAS. These resources and findings provide insights into incipient diploidization and basis for breeding improvement of this medicinal plant.


Subject(s)
Diploidy , Perilla/genetics , Plants, Medicinal/genetics , Base Sequence , Biological Evolution , Genes, Plant , Genetics, Population , Genome, Plant , Genome-Wide Association Study , Nucleotides/genetics , Pigmentation/genetics , Plant Leaves/genetics , Polyploidy
15.
Mitochondrial DNA B Resour ; 6(2): 368-369, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33659680

ABSTRACT

Bryophyllum daigremontianum is a very important traditional medicine and ornamental plant. Although Bryophyllum and Kalanchoe have been supported to form a clade, however, lack of chloroplast genomic severely hinders our understanding the phylogenetic relationships between them. In this study, the complete chloroplast genome of B. daigremontianum is first presented. It is 150,058 bp in length consisted a large single-copy (LSC, 82,164 bp) and a small single-copy (SSC, 17,042bp) separated by a pair of inverted repeats (IR, 25,426 bp) including 86 protein-coding genes, 37 tRNA, and 8 rRNA. Phylogenetic analysis supported that B. daigremontianum was closer to K. tomentosa than other species, which showed that chloroplast genome sequences offer a useful resource for future phylogenetic studies of Kalanchoe and Bryophyllum species.

16.
Front Plant Sci ; 12: 811166, 2021.
Article in English | MEDLINE | ID: mdl-35111184

ABSTRACT

Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or ß-caryophyllene. Protein-protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.

17.
Food Chem ; 331: 127354, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32569973

ABSTRACT

Polyphenols (flavonoids and anthraquinones) are one of the most important phytochemicals in Fagopyrum tataricum L. Gaertn. (tartary buckwheat). However, the relationship between the polyphenols of tartary buckwheat seeds and their morphological variations is unclear. We developed a liquid chromatography-mass spectrometry-based targeted metabolomics method to study the chemical profiles of 60 flavonoids and 11 anthraquinones in 40 seed cultivars (groats and hulls). Both flavonoids and anthraquinones were related to variations in seed color; the fold change from yellowish-brown to black seeds was 1.24-1.55 in groats and 0.26-0.76 in hulls. Only flavonoids contributed to significant differences in seed shape; the fold change from long to short seeds was 1.29-1.78 in groats and 1.39-1.44 in hulls. Some differential metabolites were identified at higher concentrations in hulls than in groats. This study provides new insights into differences in polyphenols among tartary buckwheat seeds with different color and shape.


Subject(s)
Anthraquinones/analysis , Fagopyrum/metabolism , Flavonoids/analysis , Metabolomics/methods , Seeds/physiology , Anthraquinones/metabolism , Chromatography, Liquid/methods , Fagopyrum/chemistry , Flavonoids/metabolism , Food Analysis/methods , Pigmentation , Secondary Metabolism , Seeds/chemistry , Seeds/metabolism , Tandem Mass Spectrometry
18.
J Vis Exp ; (157)2020 03 11.
Article in English | MEDLINE | ID: mdl-32225142

ABSTRACT

Tartary buckwheat (TB) [Fagopyrum tataricum (L.) Gaertn] possesses various biological and pharmacological activities because it contains abundant secondary metabolites such as flavonoids, especially rutin. Agrobacterium rhizogenes have been gradually used worldwide to induce hairy roots in medicinal plants to investigate gene functions and increase the yield of secondary metabolites. In this study, we have described a detailed method to generate A. rhizogenes-mediated hairy roots in TB. Cotyledons and hypocotyledonary axis at 7-10 days were selected as explants and infected with A. rhizogenes carrying a binary vector, which induced adventitious hairy roots that appeared after 1 week. The generated hairy root transformation was identified based on morphology, resistance selection (kanamycin), and reporter gene expression (green fluorescent protein). Subsequently, the transformed hairy roots were self-propagated as required. Meanwhile, a myeloblastosis (MYB) transcription factor, FtMYB116, was transformed into the TB genome using the A. rhizogenes-mediated hairy roots to verify the role of FtMYB116 in synthesizing flavonoids. The results showed that the expression of flavonoid-related genes and the yield of flavonoid compounds (rutin and quercetin) were significantly (p < 0.01) promoted by FtMYB116, indicating that A. rhizogenes-mediated hairy roots can be used as an effective alternative tool to investigate gene functions and the production of secondary metabolites. The detailed step-by-step protocol described in this study for generating hairy roots can be adopted for any genetic transformation or other medicinal plants after adjustment.


Subject(s)
Agrobacterium/metabolism , Fagopyrum/genetics , Fagopyrum/microbiology , Plant Roots/microbiology , Transformation, Genetic , Gene Expression Regulation, Plant , Genes, Reporter , Genetic Vectors/metabolism , Green Fluorescent Proteins/metabolism , Light , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plants, Genetically Modified , Rutin/biosynthesis , Rutin/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Front Pharmacol ; 11: 244, 2020.
Article in English | MEDLINE | ID: mdl-32265692

ABSTRACT

In Cambodia, medicinal plants are often used to treat various illnesses. However, the identities of many medicinal plants remain unknown. In this study, we collected 50 types of traditional Cambodian medicinal plants that could not be identified by their appearance from a domestic market. We utilized the DNA barcoding technique, combined with the literature survey, to trace their identities. In the end, 33 species were identified at the species level and 7 species were identified at the genus level. The ethnopharmacological information of 33 medicinal plants was documented. The DNA barcoding technique is useful in the identification of medicinal plants with no previous information.

20.
Food Chem ; 318: 126478, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32126466

ABSTRACT

With people's increasing needs for health concern, rutin and emodin in tartary buckwheat have attracted much attention for their antioxidant, anti-diabetic and reducing weight function. However, the biosynthesis of rutin and emodin in tartary buckwheat is still unclear; especially their later glycosylation contributing to make them more stable and soluble is uncovered. Based on tartary buckwheat' genome, the gene structures of 106 UGTs were analyzed; 21 candidate FtUGTs were selected to enzymatic test by comparing their transcript patterns. Among them, FtUGT73BE5 and other 4 FtUGTs were identified to glucosylate flavonol or emodin in vitro; especially rFtUGT73BE5 could catalyze the glucosylation of all tested flavonoids and emodin. Furthermore, the identical in vivo functions of FtUGT73BE5 were demonstrated in tartary buckwheat hairy roots. The transcript profile of FtUGT73BE5 was consistent with the accumulation trend of rutin in plant; this gene may relate to anti-adversity for its transcripts were up-regulated by MeJA, and repressed by ABA.


Subject(s)
Emodin/metabolism , Fagopyrum/genetics , Glucosyltransferases/genetics , Rutin/biosynthesis , Acetates/pharmacology , Cyclopentanes/pharmacology , Fagopyrum/drug effects , Fagopyrum/metabolism , Flavonoids/metabolism , Flavonols/metabolism , Gene Expression Regulation, Plant/drug effects , Genome, Plant , Genome-Wide Association Study , Glucosides/metabolism , Glucosyltransferases/metabolism , Oxylipins/pharmacology , Plant Roots/genetics , Plant Roots/metabolism , Rutin/genetics , Rutin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL