Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Complementary Medicines
Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Phytomedicine ; 23(3): 324-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26969386

ABSTRACT

BACKGROUND: We have previously found that methyl syringate is a specific and selective agonist of the human transient receptor potential channel ankyrin 1 (TRPA1) and suppresses food intake and gastric emptying in imprinting control region mice. Because TRPA1 has been implicated in inflammatory responses, and inflammation and tumorigenesis are stimulated by the cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells. PURPOSE: This study examined the effects of methyl syringate on hypoxia-induced COX-2 in human distal lung epithelial A549 cells. STUDY DESIGN: The effect of the methyl syringate on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or quantitative real-time polymerase chain reaction. The anti-invasive effect of methyl syringate was evaluated on A549 cells using matrigel invasion assay. RESULTS: Methyl syringate suppressed hypoxia-induced COX-2 protein and mRNA expression and promoter activity and reduced hypoxia-induced cell migration and invasion and secretion of vascular endothelial growth factor. These effects were antagonized by a TRPA1 antagonist, implying their mediation by the TRPA1 pathway. CONCLUSION: Together, these results indicate that methyl syringate inhibits the hypoxic induction of COX-2 expression and cell invasion through TRPA1 activation. These findings suggest that methyl syringate could be effective to suppress hypoxia-induced inflammation and indicate an additional functional effect of methyl syringate.


Subject(s)
Cyclooxygenase 2/metabolism , Epithelial Cells/drug effects , Gallic Acid/analogs & derivatives , Nerve Tissue Proteins/agonists , Transient Receptor Potential Channels/agonists , Calcium Channels , Cell Hypoxia , Cell Line, Tumor , Cell Movement , Epithelial Cells/metabolism , Gallic Acid/pharmacology , Humans , Lung Neoplasms/metabolism , Neoplasm Invasiveness , Promoter Regions, Genetic , TRPA1 Cation Channel , Vascular Endothelial Growth Factor A/metabolism
2.
Phytomedicine ; 22(6): 597-604, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26055124

ABSTRACT

BACKGROUND: Korean red ginseng (KRG) is a traditional herbal medicine made by steaming and drying the fresh ginseng, leading to chemical transformation of some components by heat. It ameliorates various inflammatory diseases and strengthens the endocrine, immune, and central nervous systems. The cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells has important implications for stimulation of inflammation and tumorigenesis. PURPOSE: In this study we examined the effects and the mechanism underlying Korean red ginseng water extract (KRG-WE) inhibition of hypoxia-induced COX-2 in human distal lung epithelial A549 cells. STUDY DESIGN: The effect of the KRG on suppression of hypoxia-induced COX-2 in A549 cells were determined by Western blot and/or qRT-PCR. The anti-invasive effect of KRG-WE was evaluated on A549 cells using matrigel invasion assay. The activation of glucocorticoid receptor (GR) and sirtuin1 (Sirt1) was examined by using specific inhibitors. RESULTS: We first observed that hypoxia induced COX-2 protein and mRNA levels and promoter activity were suppressed by KRG-WE. Second, we observed that hypoxia-induced cell migration is dramatically reduced by KRG-WE. Third, we found that the effect of KRG-WE was not antagonized by the GR antagonist RU486 implying that the effect is mediated other than GR pathway. Finally, we demonstrated that inhibition of Sirt1 abolished the effect of KRG-WE on hypoxia-induced COX-2 suppression and cell-invasion indicating that the suppression is mediated by Sirt1. CONCLUSION: Taken together, KRG-WE inhibits the hypoxic induction of COX-2 expression and cell invasion through Sirt1 activation. Our results imply that KRG-WE could be effective for suppression of inflammation under hypoxia.


Subject(s)
Cyclooxygenase 2/metabolism , Epithelial Cells/drug effects , Panax/chemistry , Plant Extracts/pharmacology , Sirtuin 1/metabolism , Cell Hypoxia , Cell Line, Tumor , Cell Movement , Epithelial Cells/cytology , Gene Expression Regulation, Neoplastic , Glucocorticoids/metabolism , Humans , Mifepristone , Plants, Medicinal/chemistry , Promoter Regions, Genetic
3.
J Ginseng Res ; 36(2): 169-75, 2012 Apr.
Article in English | MEDLINE | ID: mdl-23717117

ABSTRACT

Ginseng has been used as a traditional medicine for treatment of many diseases and for general health maintenance in people of all ages. Ginseng is also used to ameliorate menopausal systems. We investigated the estrogenic activity of Korean red ginseng (KRG) in a transient transfection system, using estrogen receptor (ER) and estrogen-responsive luciferase plasmids in MCF-7 cells. The extract activated both ERα and ERß. KRG modulated the mRNA levels of estrogen-responsive genes such as pS2 and ESR1 and decreased the protein level of ERα. In order to examine in vivo estrogenic activity of KRG, sixteen female Sprague-Dawley rats separated into four groups were studied for nine weeks: non-ovariectomized (OVX) rats treated with olive oil, OVX rats treated with olive oil, OVX rats treated with 17-ß-estradiol (E2) in olive oil, and OVX rats treated with KRG extract in olive oil. The experiments were repeated for three times and the data of twelve rats were combined. Body weight of OVX rats was greater than that of sham-operated control rats and was decreased by E2 treatment. Uterine weight increased after E2 treatment compared to OVX rats. However, no difference in body or uterine weight was observed with KRG intake. KRG induced reductions in total cholesterol, low density lipoprotein cholesterol/total cholesterol, high density lipoprotein cholesterol/total cholesterol, and low density lipoprotein cholesterol/high density lipoprotein cholesterol, but not to the same degree as did E2 intake. These results show that KRG does contain estrogenic activity as manifested by in vitro study but the activity is not strong enough to elicit physiological responses.

SELECTION OF CITATIONS
SEARCH DETAIL