Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587909

ABSTRACT

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Subject(s)
Bombyx , Diapause, Insect , Diapause , Animals , Bombyx/metabolism , DNA, Complementary , Ganglia , Opsins/metabolism
2.
Biochem Biophys Res Commun ; 290(1): 280-6, 2002 Jan 11.
Article in English | MEDLINE | ID: mdl-11779166

ABSTRACT

Vertebrate ancient (VA) opsin of nonvisual pigment in fishes was reported to exist in two isoforms, i.e., short and long variants with an unusual predicted amino acid sequence length compared to vertebrate visual opsins. Here we cloned an isoform (Pal-VAM) of VA opsin showing the usual opsin length in addition to the long type isoform (Pal-VAL) from a smelt fish, Plecoglossus altivelis. Pal-VAM and Pal-VAL were composed of 346 and 387 amino acids, respectively. The deduced amino acid sequences of these variants were identical to each other within the first 342 residues, but they showed divergence in the carboxyl-terminal sequence. Pal-VAL corresponded to the long isoform found in zebrafish and carp, and Pal-VAM was identified as a new type of VA opsin variant. Southern blotting experiments indicated that the VA opsin gene of the smelt is present as a single copy, and RT-PCR analysis revealed that Pal-VAM and Pal-VAL mRNA were expressed in both the eyes and brain. In situ hybridization showed that Pal-VAM and Pal-VAL mRNA are expressed in amacrine cells in the retina. Pal-VAM is a new probably functional nonvisual photoreceptive molecule in fish.


Subject(s)
Rod Opsins/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Animals , Base Sequence , Blotting, Southern , Brain/metabolism , Carps , Cloning, Molecular , DNA, Complementary/metabolism , Eye/metabolism , Fishes , In Situ Hybridization , Molecular Sequence Data , Phylogeny , Protein Isoforms , RNA, Messenger/metabolism , Retina/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Rod Opsins/biosynthesis , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL