Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Med Food ; 17(7): 810-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24955642

ABSTRACT

Photoaging accounts for most age-related changes in skin appearance. It has been suggested that both astaxanthin, a potent antioxidant, and collagen hydrolysate can be used as antiaging modalities in photoaged skin. However, there is no clinical study using astaxanthin combined with collagen hydrolysate. We investigated the effects of using a combination of dietary astaxanthin and collagen hydrolysate supplementation on moderately photoaged skin in humans. A total of 44 healthy subjects were recruited and treated with astaxanthin (2 mg/day) combined with collagen hydrolysate (3 g/day) or placebos, which were identical in appearance and taste to the active supplementation for 12 weeks. The elasticity and hydration properties of facial skin were evaluated using noninvasive objective devices. In addition, we also evaluated the expression of procollagen type I, fibrillin-1, matrix metalloproteinase-1 (MMP-1) and -12, and ultraviolet (UV)-induced DNA damage in artificially UV-irradiated buttock skin before and after treatment. The supplement group showed significant improvements in skin elasticity and transepidermal water loss in photoaged facial skin after 12 weeks compared with the placebo group. In the supplement group, expression of procollagen type I mRNA increased and expression of MMP-1 and -12 mRNA decreased compared with those in the placebo group. In contrast, there was no significant difference in UV-induced DNA damage between groups. These results demonstrate that dietary astaxanthin combined with collagen hydrolysate can improve elasticity and barrier integrity in photoaged human facial skin, and such treatment is well tolerated.


Subject(s)
Collagen/administration & dosage , Dietary Supplements , Skin Aging/drug effects , Skin/drug effects , Adult , Antioxidants/administration & dosage , Asian People , Collagen Type I/genetics , Collagen Type I/metabolism , DNA Damage/drug effects , DNA Damage/radiation effects , Double-Blind Method , Elasticity , Female , Fibrillin-1 , Fibrillins , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Middle Aged , Patient Compliance , RNA, Messenger/genetics , RNA, Messenger/metabolism , Skin/metabolism , Ultraviolet Rays/adverse effects , Xanthophylls/administration & dosage
2.
J Invest Dermatol ; 124(2): 315-23, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15675949

ABSTRACT

Dehydroepiandrosterone (DHEA) and its sulfate conjugate (DHEA-S) are the most abundantly produced human adrenal steroids to be reduced with age. DHEA may be related to the process of skin aging through the regulation and degradation of extracelluar matrix protein. In this study, we demonstrate that DHEA can increase procollagen synthesis and inhibit collagen degradation by decreasing matrix metalloproteinases (MMP)-1 synthesis and increasing tisuue inhibitor of matrix metalloprotease (TIMP-1) production in cultured dermal fibroblasts. DHEA was found to inhibit ultraviolet (UV)-induced MMP-1 production and the UV-induced decrease of procollagen synthesis, probably due to the inhibition of UV-induced AP-1 activity. DHEA (5%) in ethanol:olive oil (1:2) was topically applied to buttock skin of volunteers 12 times over 4 weeks, and was found to significantly increase the expression of procollagen alpha1(I) mRNA and protein in both aged and young skin. On the other hand, topical DHEA significantly decreased the basal expression of MMP-1 mRNA and protein, but increased the expression of TIMP-1 protein in aged skin. We also found that DHEA induced the expressions of transforming growth factor-beta1 and connective tissue growth factor mRNA in cultured fibroblasts and aged skin, which may play a role in the DHEA-induced changes of procollagen and MMP-1 expression. Our results suggest the possibility of using DHEA as an anti-skin aging agent.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Collagen Type I/metabolism , Dehydroepiandrosterone/administration & dosage , Dermis/drug effects , Dermis/metabolism , Administration, Topical , Adult , Aged , Aged, 80 and over , Cells, Cultured , Collagen Type I/genetics , Connective Tissue Growth Factor , Dermis/cytology , Fibroblasts/cytology , Fibroblasts/radiation effects , Gene Expression/drug effects , Humans , Immediate-Early Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Male , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , RNA, Messenger/analysis , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transcription Factor AP-1/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta1 , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL