Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
J Ginseng Res ; 45(3): 380-389, 2021 May.
Article in English | MEDLINE | ID: mdl-34025131

ABSTRACT

Metabolic syndrome (MS) refers to a clustering of at least three of the following medical conditions: high blood pressure, abdominal obesity, hyperglycemia, low high-density lipoprotein level, and high serum triglycerides. MS is related to a wide range of diseases which includes obesity, diabetes, insulin resistance, cardiovascular disease, dyslipidemia, or non-alcoholic fatty liver disease. There remains an ongoing need for improved treatment strategies for MS. The most important risk factors are dietary pattern, genetics, old age, lack of exercise, disrupted biology, medication usage, and excessive alcohol consumption, but pathophysiology of MS has not been completely identified. Korean Red Ginseng (KRG) refers to steamed/dried ginseng, traditionally associated with beneficial effects such as anti-inflammation, anti-fatigue, anti-obesity, anti-oxidant, and anti-cancer effects. KRG has been often used in traditional medicine to treat multiple metabolic conditions. This paper summarizes the effects of KRG in MS and related diseases such as obesity, cardiovascular disease, insulin resistance, diabetes, dyslipidemia, or non-alcoholic fatty liver disease based on experimental research and clinical studies.

2.
Free Radic Biol Med ; 97: 250-262, 2016 08.
Article in English | MEDLINE | ID: mdl-27317854

ABSTRACT

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders.


Subject(s)
Apoptosis/drug effects , Brain Ischemia/metabolism , Oxidative Stress , Phosphoproteins/pharmacology , Recombinant Fusion Proteins/pharmacology , 14-3-3 Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Brain Ischemia/drug therapy , CA1 Region, Hippocampal/pathology , Cell Line , DNA Fragmentation , Drug Evaluation, Preclinical , Gerbillinae , Male , Protein Processing, Post-Translational
3.
J Invest Dermatol ; 131(7): 1477-85, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21430698

ABSTRACT

Immunophilin, FK506-binding protein 12 (FK506BP), is a receptor protein for the immunosuppressive drug FK506 by the FK506BP/FK506 complex. However, the precise function of FK506BP in inflammatory diseases remains unclear. Therefore, we examined the protective effects of FK506BP on atopic dermatitis (AD) in tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ)-induced HaCaT cells and 2,4-dinitrofluorobenzene-induced AD-like dermatitis in Nishiki-nezumi Cinnamon/Nagoya (NC/Nga) mice using a cell-permeable PEP-1-FK506BP. Transduced PEP-1-FK506BP significantly inhibited the expression of cytokines, as well as the activation of NF-κB and mitogen-activated protein kinase (MAPK) in TNF-α/IFN-γ-induced HaCaT cells. Furthermore, topical application of PEP-1-FK506BP to NC/Nga mice markedly inhibited AD-like dermatitis as determined by a histological examination and assessment of serum IgE levels, as well as cytokines and chemokines. These results indicate that PEP-1-FK506BP inhibits NF-κB and MAPK activation in cells and AD-like skin lesions by reducing the expression levels of cytokines and chemokines, thus suggesting that PEP-1-FK506BP may be a potential therapeutic agent for AD.


Subject(s)
Cysteamine/analogs & derivatives , Dermatitis, Atopic/drug therapy , Peptides/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Tacrolimus Binding Proteins/therapeutic use , Animals , Cysteamine/therapeutic use , Dermatitis, Atopic/etiology , Disease Models, Animal , Immunoglobulin E/blood , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/genetics , MAP Kinase Signaling System , Mice , NF-kappa B/metabolism , Peptides/genetics , Peptides/physiology , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/physiology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL