Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
ACS Pharmacol Transl Sci ; 6(5): 683-701, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37200814

ABSTRACT

Dietary supplements and natural products are often marketed as safe and effective alternatives to conventional drugs, but their safety and efficacy are not well regulated. To address the lack of scientific data in these areas, we assembled a collection of Dietary Supplements and Natural Products (DSNP), as well as Traditional Chinese Medicinal (TCM) plant extracts. These collections were then profiled in a series of in vitro high-throughput screening assays, including a liver cytochrome p450 enzyme panel, CAR/PXR signaling pathways, and P-glycoprotein (P-gp) transporter assay activities. This pipeline facilitated the interrogation of natural product-drug interaction (NaPDI) through prominent metabolizing pathways. In addition, we compared the activity profiles of the DSNP/TCM substances with those of an approved drug collection (the NCATS Pharmaceutical Collection or NPC). Many of the approved drugs have well-annotated mechanisms of action (MOAs), while the MOAs for most of the DSNP and TCM samples remain unknown. Based on the premise that compounds with similar activity profiles tend to share similar targets or MOA, we clustered the library activity profiles to identify overlap with the NPC to predict the MOAs of the DSNP/TCM substances. Our results suggest that many of these substances may have significant bioactivity and potential toxicity, and they provide a starting point for further research on their clinical relevance.

2.
Methods Mol Biol ; 2454: 811-827, 2022.
Article in English | MEDLINE | ID: mdl-34128205

ABSTRACT

Human pluripotent stem cells (hPSCs), such as induced pluripotent stem cells (iPSCs), hold great promise for drug discovery, toxicology studies, and regenerative medicine. Here, we describe standardized protocols and experimental procedures that combine automated cell culture for scalable production of hPSCs with quantitative high-throughput screening (qHTS) in miniaturized 384-well plates. As a proof of principle, we established dose-response assessments and determined optimal concentrations of 12 small molecule compounds that are commonly used in the stem cell field. Multi-parametric analysis of readouts from diverse assays including cell viability, mitochondrial membrane potential, plasma membrane integrity, and ATP production was used to distinguish normal biological responses from cellular stress induced by small molecule treatment. Collectively, the establishment of integrated workflows for cell manufacturing, qHTS, high-content imaging, and data analysis provides an end-to-end platform for industrial-scale projects and should leverage the drug discovery process using hPSC-derived cell types.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Culture Techniques/methods , Cell Differentiation/physiology , Drug Evaluation, Preclinical , High-Throughput Screening Assays/methods , Humans
3.
Sci Transl Med ; 11(519)2019 11 20.
Article in English | MEDLINE | ID: mdl-31748226

ABSTRACT

Diffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs. This effort generated 19,936 single-agent dose responses that inspired a series of HTS-enabled drug combination assessments encompassing 9195 drug-drug examinations. Top combinations were validated across patient-derived cell cultures representing the major DMG genotypes. In vivo testing in patient-derived xenograft models validated the combination of the multi-histone deacetylase (HDAC) inhibitor panobinostat and the proteasome inhibitor marizomib as a promising therapeutic approach. Transcriptional and metabolomic surveys revealed substantial alterations to key metabolic processes and the cellular unfolded protein response after treatment with panobinostat and marizomib. Mitigation of drug-induced cytotoxicity and basal mitochondrial respiration with exogenous application of nicotinamide mononucleotide (NMN) or exacerbation of these phenotypes when blocking nicotinamide adenine dinucleotide (NAD+) production via nicotinamide phosphoribosyltransferase (NAMPT) inhibition demonstrated that metabolic catastrophe drives the combination-induced cytotoxicity. This study provides a comprehensive single-agent and combinatorial drug screen for DMG and identifies concomitant HDAC and proteasome inhibition as a promising therapeutic strategy that underscores underrecognized metabolic vulnerabilities in DMG.


Subject(s)
Brain Neoplasms/drug therapy , Drug Evaluation, Preclinical , Glioma/drug therapy , High-Throughput Screening Assays/methods , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Stem Neoplasms/drug therapy , Cell Death , Cell Line, Tumor , Drug Synergism , Female , Glioma/genetics , Glioma/metabolism , Humans , Lactones/pharmacology , Lactones/therapeutic use , Male , Metabolomics , Mice , Panobinostat/pharmacology , Panobinostat/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Reproducibility of Results , Sequence Analysis, RNA , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
4.
Methods Mol Biol ; 1939: 11-35, 2019.
Article in English | MEDLINE | ID: mdl-30848454

ABSTRACT

The identification of drug combinations as alternatives to single-agent therapeutics has traditionally been a slow, largely manual process. In the last 10 years, high-throughput screening platforms have been developed that enable routine screening of thousands of drug pairs in an in vitro setting. In this chapter, we describe the workflow involved in screening a single agent versus a library of mechanistically annotated, investigation, and approved drugs using a full dose-response matrix scheme using viability as the readout. We provide details of the automation required to run the screen and the informatics required to process data from screening robot and subsequent analysis and visualization of the datasets.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Acoustics/instrumentation , Animals , Cell Survival/drug effects , Drug Combinations , Drug Evaluation, Preclinical/instrumentation , Equipment Design , High-Throughput Screening Assays/instrumentation , Humans , Software , Workflow
5.
SLAS Technol ; 24(1): 28-40, 2019 02.
Article in English | MEDLINE | ID: mdl-30289729

ABSTRACT

Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Evaluation, Preclinical/methods , Glioblastoma/pathology , Mutation , Spheroids, Cellular/drug effects , Antineoplastic Agents/toxicity , Cell Survival/drug effects , High-Throughput Screening Assays/methods , Humans , Tumor Cells, Cultured
6.
J Biol Chem ; 293(35): 13750-13765, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29945974

ABSTRACT

The histone lysine methyltransferase nuclear receptor-binding SET domain protein 2 (NSD2, also known as WHSC1/MMSET) is an epigenetic modifier and is thought to play a driving role in oncogenesis. Both NSD2 overexpression and point mutations that increase its catalytic activity are associated with several human cancers. Although NSD2 is an attractive therapeutic target, no potent, selective, and bioactive small molecule inhibitors of NSD2 have been reported to date, possibly due to the challenges of developing high-throughput assays for NSD2. Here, to establish a platform for the discovery and development of selective NSD2 inhibitors, we optimized and implemented multiple assays. We performed quantitative high-throughput screening with full-length WT NSD2 and a nucleosome substrate against a diverse collection of bioactive small molecules comprising 16,251 compounds. We further interrogated 174 inhibitory compounds identified in the primary screen with orthogonal and counter assays and with activity assays based on the clinically relevant NSD2 variants E1099K and T1150A. We selected five confirmed inhibitors for follow-up, which included a radiolabeled validation assay, surface plasmon resonance studies, methyltransferase profiling, and histone methylation in cells. We found that all five NSD2 inhibitors bind the catalytic SET domain and one exhibited apparent activity in cells, validating the workflow and providing a template for identifying selective NSD2 inhibitors. In summary, we have established a robust discovery pipeline for identifying potent NSD2 inhibitors from small-molecule libraries.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Nucleosomes/metabolism , Repressor Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Cell Line, Tumor , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/metabolism , Humans , Nucleosomes/drug effects , Repressor Proteins/metabolism , Small Molecule Libraries/chemistry
7.
J Med Chem ; 61(8): 3582-3594, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29624387

ABSTRACT

The Ebola virus (EBOV) causes severe human infection that lacks effective treatment. A recent screen identified a series of compounds that block EBOV-like particle entry into human cells. Using data from this screen, quantitative structure-activity relationship models were built and employed for virtual screening of a ∼17 million compound library. Experimental testing of 102 hits yielded 14 compounds with IC50 values under 10 µM, including several sub-micromolar inhibitors, and more than 10-fold selectivity against host cytotoxicity. These confirmed hits include FDA-approved drugs and clinical candidates with non-antiviral indications, as well as compounds with novel scaffolds and no previously known bioactivity. Five selected hits inhibited BSL-4 live-EBOV infection in a dose-dependent manner, including vindesine (0.34 µM). Additional studies of these novel anti-EBOV compounds revealed their mechanisms of action, including the inhibition of NPC1 protein, cathepsin B/L, and lysosomal function. Compounds identified in this study are among the most potent and well-characterized anti-EBOV inhibitors reported to date.


Subject(s)
Antiviral Agents/pharmacology , Ebolavirus/drug effects , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Drug Discovery , Drug Evaluation, Preclinical , HeLa Cells , Humans , Molecular Structure , Quantitative Structure-Activity Relationship , Small Molecule Libraries/chemistry , Vero Cells , Virus Internalization/drug effects
8.
Malar J ; 16(1): 147, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28407766

ABSTRACT

BACKGROUND: Blocking malaria transmission is an important step in eradicating malaria. In the field, transmission requires the production of sexual stage Plasmodium parasites, called gametocytes, which are not effectively killed by the commonly used anti-malarials allowing individuals to remain infectious after clearance of asexual parasites. METHODS: To identify new gametocytocidal compounds, a library of 45,056 compounds with diverse structures was screened using a high throughput gametocyte viability assay. The characteristics of active hits were further evaluated against asexual stage parasites in a growth inhibition assay. Their cytotoxicity were tested against mammalian cells in a cytotoxicity assay. The chemical scaffold similarity of active hits were studied using scaffold cluster analysis. RESULTS: A set of 23 compounds were identified and further confirmed for their activity against gametocytes. All the 23 confirmed compounds possess dual-activities against both gametocytes responsible for human to mosquito transmission and asexual parasites that cause the clinical symptoms. Three of these compounds were fourfold more active against gametocytes than asexual parasites. Further cheminformatic analysis revealed three sets of novel scaffolds, including highly selective 4-1H-pyrazol-5-yl piperidine analogs. CONCLUSIONS: This study revealed important new structural scaffolds that can be used as starting points for dual activity anti-malarial drug development.


Subject(s)
Antimalarials/isolation & purification , Antimalarials/pharmacology , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Antimalarials/toxicity , Cell Survival/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Molecular Structure
9.
Emerg Microbes Infect ; 5(11): e116, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27826141

ABSTRACT

Current antimicrobial susceptibility testing has limited screening capability for identifying empirical antibiotic combinations to treat severe bacterial infections with multidrug-resistant (MDR) organisms. We developed a new antimicrobial susceptibility assay using automated ultra-high-throughput screen technology in combination with a simple bacterial growth assay. A rapid screening of 5170 approved drugs and other compounds identified 25 compounds with activities against MDR Klebsiella pneumoniae. To further improve the efficacy and reduce the effective drug concentrations, we applied a targeted drug combination approach that integrates drugs' clinical antimicrobial susceptibility breakpoints, achievable plasma concentrations, clinical toxicities and mechanisms of action to identify optimal drug combinations. Three sets of three-drug combinations were identified with broad-spectrum activities against 10 MDR clinical isolates including K. pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Citrobacter freundii, Enterobacter cloacae and Escherichia coli. Colistin-auranofin-ceftazidime and colistin-auranofin-rifabutin suppressed >80% growth of all 10 MDR strains; while rifabutin-colistin-imipenem inhibited >75% of these strains except two Acinetobacter baumannii isolates. The results demonstrate this new assay has potential as a real-time method to identify new drugs and effective drug combinations to combat severe clinical infections with MDR organisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antirheumatic Agents/pharmacology , Auranofin/pharmacology , Colistin/pharmacology , Drug Discovery/methods , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/isolation & purification , Bacterial Infections/microbiology , Drug Combinations , Drug Synergism , Humans , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/isolation & purification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/isolation & purification
10.
PLoS One ; 10(7): e0130796, 2015.
Article in English | MEDLINE | ID: mdl-26177200

ABSTRACT

Phenotypic assays have a proven track record for generating leads that become first-in-class therapies. Whole cell assays that inform on a phenotype or mechanism also possess great potential in drug repositioning studies by illuminating new activities for the existing pharmacopeia. The National Center for Advancing Translational Sciences (NCATS) pharmaceutical collection (NPC) is the largest reported collection of approved small molecule therapeutics that is available for screening in a high-throughput setting. Via a wide-ranging collaborative effort, this library was analyzed in the Open Innovation Drug Discovery (OIDD) phenotypic assay modules publicly offered by Lilly. The results of these tests are publically available online at www.ncats.nih.gov/expertise/preclinical/pd2 and via the PubChem Database (https://pubchem.ncbi.nlm.nih.gov/) (AID 1117321). Phenotypic outcomes for numerous drugs were confirmed, including sulfonylureas as insulin secretagogues and the anti-angiogenesis actions of multikinase inhibitors sorafenib, axitinib and pazopanib. Several novel outcomes were also noted including the Wnt potentiating activities of rotenone and the antifolate class of drugs, and the anti-angiogenic activity of cetaben.


Subject(s)
Drug Repositioning , Cell Line, Tumor , Drug Approval , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50 , Phenotype , Small Molecule Libraries/pharmacology
11.
Dis Model Mech ; 8(6): 565-76, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25810455

ABSTRACT

In the last decade, high-throughput chemical screening has become the dominant approach for discovering novel compounds with therapeutic properties. Automated screening using in vitro or cultured cell assays have yielded thousands of candidate drugs for a variety of biological targets, but these approaches have not resulted in an increase in drug discovery despite major increases in expenditures. In contrast, phenotype-driven screens have shown a much stronger success rate, which is why we developed an in vivo assay using transgenic zebrafish with a GFP-marked migrating posterior lateral line primordium (PLLp) to identify compounds that influence collective cell migration. We then conducted a high-throughput screen using a compound library of 2160 annotated bioactive synthetic compounds and 800 natural products to identify molecules that block normal PLLp migration. We identified 165 compounds that interfere with primordium migration without overt toxicity in vivo. Selected compounds were confirmed in their migration-blocking activity by using additional assays for cell migration. We then proved the screen to be successful in identifying anti-metastatic compounds active in vivo by performing orthotopic tumor implantation assays in mice. We demonstrated that the Src inhibitor SU6656, identified in our screen, can be used to suppress the metastatic capacity of a highly aggressive mammary tumor cell line. Finally, we used CRISPR/Cas9-targeted mutagenesis in zebrafish to genetically validate predicted targets of compounds. This approach demonstrates that the migrating PLLp in zebrafish can be used for large-scale, high-throughput screening for compounds that inhibit collective cell migration and, potentially, anti-metastatic compounds.


Subject(s)
Cell Movement , Drug Evaluation, Preclinical , Neoplasms/pathology , Signal Transduction , Zebrafish/metabolism , Amino Acid Sequence , Animals , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Movement/drug effects , Embryo, Nonmammalian/drug effects , Female , Humans , Indoles/pharmacology , Lateral Line System/cytology , Lateral Line System/metabolism , Mice, Inbred BALB C , Models, Biological , Molecular Sequence Data , Neoplasm Metastasis , Neoplasms/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Sulfonamides/pharmacology , Zebrafish/embryology , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism
12.
PLoS One ; 8(8): e70506, 2013.
Article in English | MEDLINE | ID: mdl-23990907

ABSTRACT

A recent large outbreak of fungal infections by Exserohilum rostratum from contaminated compounding solutions has highlighted the need to rapidly screen available pharmaceuticals that could be useful in therapy. The present study utilized two newly-developed high throughput assays to screen approved drugs and pharmaceutically active compounds for identification of potential antifungal agents. Several known drugs were found that have potent effects against E. rostratum including the triazole antifungal posaconazole. Posaconazole is likely to be effective against infections involving septic joints and may provide an alternative for refractory central nervous system infections. The anti-E. rostratum activities of several other drugs including bithionol (an anti-parasitic drug), tacrolimus (an immunosuppressive agent) and floxuridine (an antimetabolite) were also identified from the drug repurposing screens. In addition, activities of other potential antifungal agents against E. rostratum were excluded, which may avoid unnecessary therapeutic trials and reveals the limited therapeutic alternatives for this outbreak. In summary, this study has demonstrated that drug repurposing screens can be quickly conducted within a useful time-frame. This would allow clinical implementation of identified alternative therapeutics and should be considered as part of the initial public health response to new outbreaks or rapidly-emerging microbial pathogens.


Subject(s)
Antifungal Agents/pharmacology , Ascomycota/drug effects , Drug Evaluation, Preclinical/methods , Drug Repositioning/methods , Triazoles/pharmacology , Adenosine Triphosphate/chemistry , Amphotericin B/chemistry , Antifungal Agents/chemistry , Bithionol/chemistry , Cell Line, Tumor , Floxuridine/chemistry , Humans , Hyphae/drug effects , Sepsis/drug therapy , Spores, Fungal/drug effects , Tacrolimus/chemistry , Triazoles/chemistry
13.
J Biomol Screen ; 17(9): 1231-42, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22927676

ABSTRACT

Tumor cell subpopulations called cancer stem cells (CSCs) or tumor-initiating cells (TICs) have self-renewal potential and are thought to drive metastasis and tumor formation. Data suggest that these cells are resistant to current chemotherapy and radiation therapy treatments, leading to cancer recurrence. Therefore, finding new drugs and/or drug combinations that cause death of both the differentiated tumor cells as well as CSC populations is a critical unmet medical need. Here, we describe how cancer-derived CSCs are generated from cancer cell lines using stem cell growth media and nonadherent conditions in quantities that enable high-throughput screening (HTS). A cell growth assay in a 1536-well microplate format was developed with these CSCs and used to screen a focused collection of oncology drugs and clinical candidates to find compounds that are cytotoxic against these highly aggressive cells. A hit selection process that included potency and efficacy measurements during the primary screen allowed us to efficiently identify compounds with potent cytotoxic effects against spheroid-derived CSCs. Overall, this research demonstrates one of the first miniaturized HTS assays using CSCs. The procedures described here should enable further testing of the effect of compounds on CSCs and help determine which pathways need to be targeted to kill them.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Neoplastic Stem Cells/drug effects , Small Molecule Libraries/pharmacology , Animals , Cell Culture Techniques , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical/methods , Homeodomain Proteins/metabolism , Humans , Male , Mice , Nanog Homeobox Protein , Neoplasms/drug therapy
14.
Sci Transl Med ; 3(80): 80ps16, 2011 Apr 27.
Article in English | MEDLINE | ID: mdl-21525397

ABSTRACT

Small-molecule compounds approved for use as drugs may be "repurposed" for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening.


Subject(s)
Drug Approval , Drug Evaluation, Preclinical , Drug Repositioning , Genomics , National Institutes of Health (U.S.) , Pharmaceutical Preparations , Cooperative Behavior , Drug Evaluation, Preclinical/methods , Genomics/methods , Humans , Medical Informatics , Pharmaceutical Preparations/chemistry , Quality Control , United States
15.
Assay Drug Dev Technol ; 8(3): 367-79, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20230302

ABSTRACT

Activation of G(q) protein-coupled receptors can be monitored by measuring the increase in intracellular calcium with fluorescent dyes. Recent advances in fluorescent kinetic plate readers and liquid-handling technology have made it possible to follow these transient changes in intracellular calcium in a 1,536-well plate format for high-throughput screening (HTS). Here, we have applied the latest generation of fluorescence kinetic plate readers to multiplex the agonist and antagonist screens of a G protein-coupled receptor (GPCR). This multiplexed assay format provides an efficient and cost-effective method for HTS of G(q)-coupled GPCR targets.


Subject(s)
Calcium/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , CHO Cells , Calcium/analysis , Calibration , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fluorescent Dyes , Indicators and Reagents , Kinetics , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Radioligand Assay , Receptor, Muscarinic M1/drug effects
16.
Bioorg Med Chem Lett ; 19(23): 6700-5, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19837585

ABSTRACT

A series of substituted 6-arylquinazolin-4-amines were prepared and analyzed as inhibitors of Clk4. Synthesis, structure-activity relationships and the selectivity of a potent analogue against a panel of 402 kinases are presented. Inhibition of Clk4 by these agents at varied concentrations of assay substrates (ATP and receptor peptide) highly suggests that this chemotype is an ATP competitive inhibitor. Molecular docking provides further evidence that inhibition is the result of binding at the kinase hinge region. Selected compounds represent novel tools capable of potent and selective inhibition of Clk1, Clk4, and Dyrk1A.


Subject(s)
Amines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinazolines/pharmacology , Amines/chemical synthesis , Amines/chemistry , Crystallography, X-Ray , Drug Design , Drug Evaluation, Preclinical , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
17.
J Biomol Screen ; 13(2): 120-7, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18216391

ABSTRACT

The thyroid-stimulating hormone (TSH; thyrotropin) receptor belongs to the glycoprotein hormone receptor subfamily of 7-transmembrane spanning receptors. TSH receptor (TSHR) is expressed mainly in thyroid follicular cells and is activated by TSH, which regulates the growth and function of thyroid follicular cells. Recombinant TSH is used in diagnostic screens for thyroid cancer, especially in patients after thyroid cancer surgery. Currently, no selective small-molecule agonists of the TSHR are available. To screen for novel TSHR agonists, the authors miniaturized a commercially available cell-based cyclic adenosine 3',5' monophosphate (cAMP) assay into a 1536-well plate format. This assay uses an HEK293 cell line stably transfected with the TSHR coupled to a cyclic nucleotide gated ion channel as a biosensor. From a quantitative high-throughput screen of 73,180 compounds in parallel with a parental cell line (without the TSHR), 276 primary active compounds were identified. The activities of the selected active compounds were further confirmed in an orthogonal homogeneous time-resolved fluorescence cAMP-based assay. Forty-nine compounds in several structural classes have been confirmed as the small-molecule TSHR agonists that will serve as a starting point for chemical optimization and studies of thyroid physiology in health and disease.


Subject(s)
Cyclic AMP/analysis , Drug Evaluation, Preclinical/methods , Receptors, Thyrotropin/agonists , Small Molecule Libraries/analysis , Algorithms , Calibration , Cells, Cultured , False Positive Reactions , Humans , Miniaturization , Models, Biological , Quantitative Structure-Activity Relationship , Receptors, Thyrotropin/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL