Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Thorac Oncol ; 19(3): 500-506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38012986

ABSTRACT

INTRODUCTION: Amivantamab-vmjw (amivantamab) is a bispecific EGFR/MET antibody approved for patients with advanced NSCLC with EGFR exon 20 insertion mutations, after prior therapy. Nevertheless, the benefits and safety of amivantamab in other EGFR-mutant lung cancer, with or without osimertinib, and with concurrent radiation therapy, are less known. METHODS: We queried the MD Anderson Lung Cancer GEMINI, Fred Hutchinson Cancer Research Center, University of California Davis Comprehensive Cancer Center, and Stanford Cancer Center's database for patients with EGFR-mutant NSCLC treated with amivantamab, not on a clinical trial. The data analyzed included initial response, duration of treatment, and concomitant radiation safety in overall population and prespecified subgroups. RESULTS: A total of 61 patients received amivantamab. Median age was 65 (31-81) years old; 72.1% were female; and 77% were patients with never smoking history. Median number of prior lines of therapies was four. On the basis of tumor's EGFR mutation, 39 patients were in the classical mutation cohort, 15 patients in the exon 20 cohort, and seven patients in the atypical cohort. There were 37 patients (58.7%) who received amivantamab concomitantly with osimertinib and 25 patients (39.1%) who received concomitant radiation. Furthermore, 54 patients were assessable for response in the overall population; 19 patients (45.2%) had clinical response and disease control rate (DCR) was 64.3%. In the classical mutation cohort of the 33 assessable patients, 12 (36.4%) had clinical response and DCR was 48.5%. In the atypical mutation cohort, six of the seven patients (85.7%) had clinical response and DCR was 100%. Of the 13 assessable patients in the exon 20 cohort, five patients (35.7%) had clinical response and DCR was 64.3%. Adverse events reported with amivantamab use were similar as previously described in product labeling. No additional toxicities were noted when amivantamab was given with radiation with or without osimertinib. CONCLUSIONS: Our real-world multicenter analysis revealed that amivantamab is a potentially effective treatment option for patients with EGFR mutations outside of exon 20 insertion mutations. The combination of osimertinib with amivantamab is safe and feasible. Radiation therapy also seems safe when administered sequentially or concurrently with amivantamab.


Subject(s)
Acrylamides , Antibodies, Bispecific , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Female , Aged , Adult , Middle Aged , Aged, 80 and over , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/chemically induced , Antineoplastic Agents/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/chemically induced , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Mutation , Protein Kinase Inhibitors/therapeutic use
2.
Pharmacol Ther ; 186: 130-137, 2018 06.
Article in English | MEDLINE | ID: mdl-29352857

ABSTRACT

Antitumor immunity relies on the ability of the immune system to recognize tumor cells as foreign and eliminate them. An effective immune response in this setting is due to surveillance of tumor-specific antigens that induce an adaptive immune response resulting in T-cell mediated cytotoxicity. Immune checkpoint inhibitors, specifically those targeting the programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis, have demonstrated promising activity in non-small cell lung cancer (NSCLC). However, there remains a crucial need for better treatment strategies for the majority of patients with advanced NSCLC, particularly in the frontline setting. Chemotherapy can increase antigenicity via immunogenic cell death (ICD) of tumor cells as well as also reduce "off target" immunosuppression in the tumor microenvironment (TME). Combining chemotherapy with PD-1 blockade harnesses the potential synergy between these agents and has led to encouraging results in the up-front treatment of NSCLC. In this review, we summarize the preclinical rationale behind these combinations and review recent trial data demonstrating their efficacy.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adaptive Immunity/drug effects , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Immunity, Innate/drug effects , Lung Neoplasms/immunology , Lung Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL