Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cancer ; 15(2): 494-507, 2024.
Article in English | MEDLINE | ID: mdl-38169542

ABSTRACT

Pyroptosis, a highly regulated form of cell death, could hold the key to revolutionizing cancer treatment. With cancer posing a significant global health challenge due to its high morbidity and mortality rates, exploring unconventional therapeutic approaches becomes imperative. Chinese medicine, renowned for its holistic principles, presents intriguing possibilities for treating gastric cancer (GC). Notably, baicalin, a prominent component found in the traditional Chinese herb Scutellaria baicalensis Georgi, has shown promising clinical potential in gastric cancer treatment.To shed light on this intriguing phenomenon, a multidisciplinary approach was undertaken, combining systems biology, bioinformatics, and in vitro studies. The primary objective was to unravel the intricate workings underlying baicalein's ability to promote gastric cancer cell pyroptosis.The findings from this comprehensive study unveiled an essential signaling axis involving NF-κB-NLRP3, which plays a pivotal role in the process of baicalein-induced pyroptosis in gastric cancer cells. As the investigation progressed, it became evident that baicalein exhibited a remarkable capability to reverse the effects of the NLRP3 inhibitor, MCC950 Sodium. Excitingly, the efficacy of cell pyroptosis induction by baicalein demonstrated a discernible dose-dependent relationship, showcasing its potential as a valuable therapeutic agent.The complex nature of these findings underscores the intricate interplay between baicalein, NF-κB-NLRP3 signaling, and gastric cancer cell pyroptosis. As the scientific community delves deeper into the world of Pyroptosis and its therapeutic implications, baicalein's potential as a game-changer in the fight against gastric cancer becomes increasingly evident.

2.
Chemosphere ; 349: 140934, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092164

ABSTRACT

As non-point source pollution has emerged as a significant global and regional concern, climate change (CC), land use/cover transformation (LUCT), and management practices (MP) play vital roles in addressing nutrient pollution. However, current studies lack comprehensive quantification and consistent conclusions on the response to these factors, especially for management practices. To quantify and elucidate the impact of representative environmental factors on rapidly urbanizing regions, this study focused on the Shenzhen River, which serves as the most typical urbanizing watershed. Using a process-based distributed hydrological model with a factor-controlled simulation method, we identified significant differences in nutrient concentrations and the impacts of climate variability, land use/cover changes, and anthropogenic interventions from 2003 to 2020. Moreover, effective measures greatly improved water quality in the Shenzhen River during study period, as evident from trend and cluster analysis. However, ecological water supplements implemented since 2016 have led to a slight reduction in simulated runoff performance, and CC may amplify the synergistic effects of precipitation and temperature on the river system. While the implemented practices have been effective in reducing total nitrogen (TN) and total phosphorus (TP) loads, strong TN pollution control is still needed in rapidly urbanizing areas due to the results of land use/cover type changes. Our findings emphasize the intricate interplay among CC, LUCT, and MP in shaping water quality and hydrological processes in rapidly urbanizing watersheds, and clarify the independent effects of these factors on nutrients. This study contributes to a better understanding of the complex interactions between multiple factors in watersheds and provides guidance for sustainable watershed management.


Subject(s)
Non-Point Source Pollution , Water Quality , Computer Simulation , Rivers , Non-Point Source Pollution/analysis , Nitrogen/analysis , Phosphorus/analysis , Environmental Monitoring/methods , China
3.
Phytomedicine ; 123: 155220, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056149

ABSTRACT

BACKGROUND: Resistance to chemotherapy in gastric cancer (GC) is a ubiquitous challenge for its treatment. Yi-qi-hua-yu-jie-du decoction (YJD), an empirical formula in Traditional Chinese Medicine (TCM), demonstrated survival-prolonging functions in patients with GC. Previous research has shown that YJD could also inhibit drug resistance in GC. However, the precise mechanisms for how YJD accomplishes this remain incompletely explained. PURPOSE: The research aimed to identify differential metabolic characteristics in cisplatin-resistant GC and investigate whether YJD can target these differences to suppress GC drug resistance. METHODS: Metabolomic analysis was conducted to identify metabolic disparities between cisplatin-resistant and parental GC cells, as well as metabolic modifications resulting from YJD intervention in cisplatin-resistant GC cells. The effect of YJD on ferroptosis stimulation was assessed by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA), iron ions, the reduced glutathione (GSH) to oxidised glutathione (GSSG) ratio, and alterations in mitochondrial morphology. Western blotting and quantitative real-time polymerase chain reaction (Q-PCR) were employed to verity the mechanisms of YJD-triggered ferroptosis through GPX4 and NRF2 overexpression models, alongside the AKT activator SC79. In vivo validation was conducted using nude mouse xenograft models. RESULTS: Cisplatin-resistant GC exhibited altered GSH/GPX4 metabolism, and ferroptosis was a significantly enriched cell death pattern with YJD treatment in cisplatin-resistant GC cells. Ferroptosis biomarkers, including ROS, MDA, iron ions, the GSH/GSSG ratio, and mitochondrial morphology, were remarkably changed with the YJD intervention. Mechanistic experiments demonstrated that YJD inhibited the phosphorylation cascade activity of the AKT/GSK3ß pathway, thereby reducing NRF2 expression. The level of GPX4, a crucial enzyme involved in glutathione metabolism, was attenuated, facilitating ferroptosis induction in cisplatin-resistant GC. CONCLUSION: The research reveals, for the first time, changes in GSH/GPX4 metabolism in cisplatin-resistant GC cells based on metabolomic analysis. YJD induced ferroptosis in cisplatin-resistant GC by inhibiting GPX4 through the AKT/GSK3ß/NRF2 pathway, thus attenuating the cisplatin drug resistance in GC. Our findings identify metabolic changes in cisplatin-resistant GC and establish a theoretical framework for YJD on tackling drug resistance in GC through ferroptosis.


Subject(s)
Ferroptosis , Stomach Neoplasms , Animals , Mice , Humans , Cisplatin/pharmacology , Stomach Neoplasms/drug therapy , Glycogen Synthase Kinase 3 beta , NF-E2-Related Factor 2 , Proto-Oncogene Proteins c-akt , Glutathione Disulfide , Reactive Oxygen Species , Ions , Iron
4.
Water Res ; 244: 120492, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37598570

ABSTRACT

The Pearl River (PR) is China's second-largest river, playing a crucial role in regulating and supplying water in the southeast. However, for the last decade, the PR has been experiencing water quality deterioration due to population growth, rapid economic development, and diverse human activities, particularly in its delta areas. This study analyzed the characteristics and evolution of eight water quality variables, including pH values (pH), water temperature (WT), dissolved oxygen (DO), five-day biochemical oxygen demand (BOD5), permanganate index (PI), total phosphorus (TP), ammonia nitrogen (NH3N), and fluoride (F-), which were monitored monthly at 16 water quality monitoring stations from January 2009 to August 2019. Overall, annual average BOD5 and F- concentrations met Class I water quality standards, while TP and NH3N conformed to lower standards. The cluster results showed noticeable differences for parameter grouping (DO-organic parameters-nutrient and solutes), seasonal variation (wet and dry), and water quality status (contaminated-remediating-fine). The Water Quality Index (WQI) ranged from 8.3 ("very poor") to 91.7 ("excellent") in the entire basin from 2009 to 2019, and NH3N-DO based WQImins were identified using the All-Subsets Linear Regression method. The fitting results of the Generalized Additive Models displayed that the deviance explained by natural factors ranged from 37.2% to 61.3%, while the socioeconomic explanation exceeded 70%. The WQImin component evolution (2003-2019) of Shenzhen River estuary, the most important part of the PR estuary, agreed with key parameter variations in heterogeneous clusters in the entire basin. Moreover, Shenzhen's water quality remediation applications indicated that reasonable-efficient-powerful efforts and support from governments could accelerate recovery. For the management departments, consistent measures should be strictly enforced, and elaborate regionalized management based on clusters could be attempted to maintain excellent water quality.


Subject(s)
Water Pollutants, Chemical , Water Quality , Humans , Environmental Monitoring/methods , Rivers , Water Pollutants, Chemical/analysis , Cluster Analysis , Phosphorus/analysis , Nitrogen/analysis , Oxygen/analysis , China
5.
Arthritis Res Ther ; 25(1): 122, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468959

ABSTRACT

BACKGROUND: Observational studies have linked hyperuricemia with venous thromboembolism (VTE). We aimed to investigate whether there are causal relationships between uric acid levels and VTE and its subtypes, including deep venous thrombosis (DVT) of the lower extremities and pulmonary embolism (PE). METHODS: We utilized Mendelian randomization (MR) analysis to estimate the causal association in European individuals. We extracted two sets of polygenic instruments strongly associated (p < 5 × 10-8) with uric acid from the CKDGen consortium and UK biobank, respectively. Genetic associations with the risk of VTE, DVT, and PE were obtained from the FinnGen biobank. We used the inverse-variance weighted method as the preliminary estimate. Additionally, we employed MR-Egger, weighted median, and Mendelian randomization pleiotropy residual sum and outlier method as complementary assessments. Sensitivity analyses were performed to test for pleiotropic bias. RESULTS: The genetically instrumented serum uric acid levels had no causal effects on VTE, DVT, and PE. Two sets of polygenic instruments used for exposure, along with three complementary MR methods, also yielded no significant association. CONCLUSIONS: Our MR analysis provided no compelling evidence for a causal relationship of serum uric acid with the risk of VTE. This suggests that uric acid-lowering therapies in patients with hyperuricemia may not be effective in reducing the likelihood of developing VTE.


Subject(s)
Hyperuricemia , Venous Thromboembolism , Humans , Venous Thromboembolism/genetics , Hyperuricemia/genetics , Mendelian Randomization Analysis , Uric Acid , Lower Extremity , Genome-Wide Association Study
6.
J Tradit Complement Med ; 13(3): 245-262, 2023 May.
Article in English | MEDLINE | ID: mdl-37128200

ABSTRACT

Background and aim: Gastric cancer (GC) is a common malignant tumor worldwide. Modified Gui-shao-liu-jun-zi decoction (mGSLJZ) is a clinically effective traditional Chinese medicine (TCM) compound in GC treatment. This study aimed to analyze main chemical substances of mGSLJZ and investigate active ingredients and molecular mechanism of mGSLJZ against GC. Experimental procedure: HPLC-Q-TOF-MS/MS was used to analyze chemical substances of mGSLJZ, and potential active ingredients were screened from TCMSP. The target set of mGSLJZ for GC was obtained based on SwissTargetPrediction. The PPI network was constructed to screen out core targets. GO and KEGG enrichment analyses were conducted to identify BPs, CCs, MFs and pathways. The "active ingredient-core target-pathway" regulatory network was constructed to obtain core substances. Subsequently, Oncomine, Proteinatlas and molecular docking were performed to validate these findings. The cell experiments were conducted to confirm the anti-GC effects of mGLSJZ. Results and conclusion: Forty-one potential active ingredients were filtered out from 120 chemical substances in mGSLJZ, including various organic acids and flavonoids. The top 10 key targets, 20 related pathways and 6 core medicinal substances were obtained based on network pharmacology analysis. Molecular docking results indicated that the core substances and key targets had good binding activities. The cell experiments validated that mGSLJZ and the core substances inhibited the proliferation in multiple GC cells and that mGLSJZ restrained the migration of GC. Meanwhile, the top 5 targets and top 2 pathways were verified. The rescue experiments demonstrated that mGSLJZ suppressed the proliferation and migration of GC through the PI3K/AKT/HIF-1 pathway.

7.
Phytomedicine ; 110: 154645, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634382

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder in gastrointestinal tract. Shen Ling Bai Zhu San (SLBZS), which has a long history of use in Traditional Chinese Medicine (TCM), has been widely used to treat gastrointestinal diseases. The isolated fractions of TCM have also been proved to possess an important potential for treating diseases, which are due to their effective components. PURPOSE: In this study, we examined the possibility that SLBZS and its isolated active fractions may prevent DSS-induced colitis, and investigated the potential mechanisms by regulating genetic profile of colon. METHODS: Colitis mice were induced by 2.5% DSS for 7 days, and then SLBZS and different SLBZS extracts were administrated to protect the mice for 7 days. Body weight, diarrhea, bleeding in stool, colon length, spleen weight, cytokines of serum and colon and pathology of colon were assessed. The level of Ginsenoside Rg1, Re and Rb1 in different SLBZS extracts and qualitative analysis of n-butanol extract of SLBZS (S-Nb) was performed by HPLC and LC-MS, respectively. And the effects of S-Nb on the transcriptome in colitis were investigated. RESULTS: Our results showed that SLBZS and S-Nb significantly regained body weight, reduced DAI, splenomegaly and the length of colon and attenuated histological damage of the colon. Meanwhile, SLBZS and S-Nb markedly reduced the levels of TNF-α, IL-1ß and IL-6 and increased the level of IL-10 in serum and colon. These effects may be associated with the high levels of Ginsenoside Rg1, Re and Rb1 and rich variety of compounds in S-Nb including 6 ginsenosides, glycyrrhizin, L-tryptophan, and so on. Transcriptome analysis revealed that S-Nb selectively regulated 103 differentially expressed genes (DEGs), 36 of which were changed in DSS-induced mice. And the genes of Per2, Per3, Npy and Serpina3m were closely related to colitis and also restored by S-Nb with different extent. Remarkably, these DEGs modulated the biological functions of colitis mice, including extracellular region, response to external stimulus, MAPK signaling pathway and arginine and proline metabolism. CONCLUSIONS: These data indicated that SLBZS and S-Nb blunted DSS-induced colitis by modulating differentially expression gene profile and biological functions based on their ginsenosides and rich compounds.


Subject(s)
Colitis , Ginsenosides , Mice , Animals , Ginsenosides/pharmacology , 1-Butanol/pharmacology , Butanols/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colon/pathology , Chronic Disease , Gene Expression Profiling , Body Weight , Dextran Sulfate , Disease Models, Animal , Mice, Inbred C57BL , Cytokines
8.
Int J Biol Macromol ; 222(Pt A): 1127-1136, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36191780

ABSTRACT

Shenling Baizhu San has beneficial effects on the metabolism of the gut microbiota, however, the mechanisms underlying microbiota metabolites mediated anti-inflammation signaling are not well understood. Previously, we have demonstrated that supplementation with Shenling Baizhu San alleviated antibiotic-associated diarrhea (AAD). The current study intends to investigate the dynamic modulation of Shenling Baizhu San polysaccharides (SP) on colitis from the gut microbiota metabolites perspective. Administration of SP effectively relieved colitis induced by DSS in mice, including alleviating body weight loss, the downregulation of colon proinflammatory mediators, and the promotion of intestinal injury repair. Whereas, the efficacy was eliminated by antibiotics, which demonstrated that the efficacy of SP was dependent on the gut microbiota. Fecal microbiota transplantation (FMT) showed that the efficacy of SP can be transferred to gut microbiota. Serum metabolomics analysis showed that supplementation with SP significantly promoted tryptophan metabolism, which was consistent with the changed structure of the gut microbiota, including Bacteroides, Bifidobacterium and Ruminococcus regulated by SP. Especially, the tryptophan metabolites-kynurenine (KYN) activated the expression of amplifying aryl-hydrocarbon receptor (AhR) and Cyp1A1 to promote IL-10 expression in colon. These data suggested that SP positively affected colitis in mice by regulating tryptophan metabolic function of their gut microbiota.


Subject(s)
Colitis , Drugs, Chinese Herbal , Mice , Animals , Tryptophan/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/microbiology , Drugs, Chinese Herbal/pharmacology , Colon , Polysaccharides/adverse effects , Mice, Inbred C57BL , Dextran Sulfate/adverse effects , Disease Models, Animal
9.
Chin Med ; 17(1): 93, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35941687

ABSTRACT

BACKGROUND: The drug resistance of tumor stem cells is an obstacle in gastric cancer (GC) treatment and the high expression of ABC transporters is a classic reason for drug resistance. This study aimed to construct a reliable GC drug-resistant stem cell model and explore the inhibitory effect and mechanism of Yi-qi-hua-yu-jie-du medicated serum (YQHY) on the drug resistance of GC stem cells based on ABC transporters. METHODS: The tumor stemness biomarker CD44 was primary identification from WGCNA. The magnetic-activated cell sorting (MACS) method was used to separate CD44( +)BGC823/5-Fu (BGC823/5-Fu-CSCs) cells and the stemness characteristics were verified from multiple dimensions. Then, the drug resistance index and expression of ABC transporter genes MDR1 and MRP1 were detected in CD44(-)/CD44(+) cells. The inhibition and apoptosis rates of the cells administrated with YQHY or/and 5-Fu were calculated to confirm that YQHY can suppress the drug resistance of BGC823/5-Fu-CSCs. Afterwards, the effects of YQHY on the expression of MDR1 and MRP1 and the activation of the PI3K/Akt/Nrf2 pathway were observed. Finally, under the administration of IGF-1 (the activator of PI3K/Akt pathway) and Nrf2 siRNA, the mechanism of YQHY on reversing the drug resistance of BGC823/5-Fu-CSCs through inhibiting the expression of MDR1 and MRP1 via PI3K/Akt/Nrf2 was verified. RESULTS: CD44 was a reliable GC stemness biomarker and can be applied to construct the drug-resistant GC stem cell model CD44(+)BGC823/5-Fu. The growth rate, cell proliferation index, soft agar colony formation, expression of stemness specific genes and tumorigenesis ability of CD44(+)BGC823/5-Fu cells were significantly higher than those of CD44(-)BGC823/5-Fu cells. BGC823/5-Fu-CSCs exhibited strong drug resistance to 5-Fu and high expression of ABC transporter genes MDR1 and MRP1 compared to CD44(-) cells. YQHY increased the inhibition and apoptosis rates to efficiently inhibit the drug resistance of BGC823/5-Fu-CSCs. Meanwhile, it suppressed the expression of MDR1 and MRP1 and restrained the activation of PI3K/Akt/Nrf2 signaling pathway. Finally, it was found that IGF-1 partially restored the activation of PI3K/Akt/Nrf2 pathway, alleviated the inhibition of MDR1 and MRP1, blocked the proliferation-inhibitory and apoptosis-promotion effects. YQHY and si-Nrf2 synergistically suppressed the MDR1/MRP1 expression and the drug resistance of BGC823/5-Fu-CSCs. CONCLUSIONS: CD44 was a reliable GC stemness biomarker, and the high expression of ABC transporter genes MDR1 and MRP1 was an important feature of drug-resistant stem cells. YQHY inhibited the MDR1 and MRP1 expression via PI3K/Akt/Nrf2 pathway, thus reversing the drug resistance of BGC823/5-Fu-CSCs.

10.
Sci Rep ; 12(1): 9401, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672352

ABSTRACT

To investigate the mechanism of the Aucklandiae Radix-Amomi Fructus (AR-AF) herb pair in treating gastric cancer (GC) by using network pharmacology and experimental verification. Using the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP), the major active components and their corresponding targets were estimated and screened out. Using Cytoscape 3.7.2 software, a visual network was established using the active components of AR-AF and the targets of GC. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways of the target enrichment were performed. AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The mRNA and protein expression levels of the hub targets were analyzed by the Oncomine, GEPIA, HPA databases and TIMER online tool, and the predicted targets were verified by qRT-PCR in vitro. Eremanthin, cynaropicrin, and aceteugenol were identified as vital active compounds, and AKT1, MAPK3, IL6, MAPK1, as well as EGFR were considered as the major targets. These targets exerted therapeutic effects on GC by regulating the cAMP signaling pathway, and PI3K-Akt signaling pathway. Molecular docking revealed that these active compounds and targets showed good binding interactions. The validation in different databases showed that most of the results were consistent with this paper. The experimental results confirmed that eremanthin could inhibit the proliferation of AGS by reducing the mRNA expression of hub targets. As predicted by network pharmacology and validated by the experimental results, AR-AF exerts antitumor effects through multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of GC.


Subject(s)
Drugs, Chinese Herbal , Stomach Neoplasms , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases/genetics , RNA, Messenger , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics
11.
Article in English | MEDLINE | ID: mdl-35571741

ABSTRACT

Objective: To explore the expression levels of miR-488, miR-29c-3p, and growth differentiation factor 15 (GDF15) in colon cancer tissue and analyze their relationship with clinicopathological features in patients with colon cancer. Methods: The study was conducted from November 2012 to November 2020. A total of 200 patients with colon cancer were treated in our hospital during this period. During the operation, the colon cancer tissues and the adjacent tissues whose distance from the cancer tissues were more than 5 cm were collected, and the expression levels of miR-488, miR-29c-3p, and GDF15 mRNA in colon cancer tissues were detected by qRT-PCR (real-time fluorescence quantitative). The relationship between them and the clinicopathological features and prognosis of patients with colon cancer were analyzed and discussed. Results: The level of miR-488 in colon cancer tissues was lower than that in adjacent tissues, but the levels of miR-29c-3p and GDF15 mRNA in colon cancer tissues were higher than those in adjacent tissues (P < 0.05). Compared with paracancerous tissues, the expression rates of miR-29c-3p and GDF15 protein were higher in colon cancer tissues (P < 0.05). There was no difference in age, sex, tumor location, and tumor diameter between high expression of miR-488 group and low expression of miR-488 group (P > 0.05). The degree of differentiation, depth of invasion, TNM stage, lymph node metastasis, and other factors have a direct impact on the level of miR-488 and the expression of miR-29c-3p (P < 0.05). The depth of invasion, TNM stage, and lymph node metastasis could affect the expression of GDF15 in patients with colon cancer (P < 0.05). Conclusion: miR-488, miR-29c-3p, and GDF15 in colon cancer tissue are related to the clinicopathological features of patients in varying degrees and may become markers after early warning of colon cancer, which can provide effective guidance for clinical diagnosis and treatment.

12.
Integr Cancer Ther ; 20: 15347354211063504, 2021.
Article in English | MEDLINE | ID: mdl-34866448

ABSTRACT

Integrative oncology has developed for about 20 years in some countries; however, integrative oncology is still a relative new term for most China's oncologists. Thus, it is essential to summarize the experience and expertise, share details of differing existing models and discuss future perspectives to help define and guide practice in integrative oncology in China. This study presents a summary of the basic characteristics, status, and challenges of integrative oncology in China, and also reports on China's integrative physicians' service delivery, clinical practice and research patterns of integrative oncology by an online national survey, including 405 oncologists. It is easy for cancer patients to access to integrative therapies in China. Public funding is sufficient for integrative oncology in China, and services are often provided through general hospitals and academic hospitals. Most (95.3%) of oncologists showed a positive attitude toward the development of integrative oncology. More than half (55.6%) of the oncologists worried about the influence on integrative oncology of COVID-19, especially for routine treatment, follow-up and holding seminars. We found that integrative oncology in China has swiftly developed in recent years. However, we suggest that standard diagnosis and treatment patterns and national professional guidelines should be set up as soon as possible.


Subject(s)
COVID-19 , Integrative Oncology , Oncologists , China , Humans , SARS-CoV-2
13.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5194-5200, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738419

ABSTRACT

Arisaematis Rhizoma included in the Chinese Pharmacopoeia is the dried tuber of Arisaema erubescens, A. heterophyllum or A. amurense in the family Araceae. This paper mainly focuses on the classification and summary of the chemical components and structures reported in recent years in the above three varieties of this medicinal material included in the pharmacopoeia, including alkaloids, flavonoids, phenylpropanoids, lignans and benzene ring derivatives, steroids and terpenes, glycosides and esters, etc. Then we reviewed the reported biological activities of these chemical components, including cytotoxicity, antitumor activity, antibacterial activity, nematicidal activity, etc. Although there have been reports on the review of the chemical composition of the medicinal material, the structure and classification of the chemical composition in these reviews are not clear enough. This review provides a basis for the later study of the chemical composition of this medicinal material, especially the identification of the chemical structures. And most of the current reviews on the biological activity of this medicinal material are mainly for the crude extract. This paper mainly summarized the biological activity of related monomer compounds and expected to lay a foundation for the development of novel high-efficiency and low-toxicity active leading compounds from Arisaematis Rhizoma.


Subject(s)
Arisaema , Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Flavonoids , Glycosides , Rhizome
14.
Am J Transl Res ; 13(5): 4591-4602, 2021.
Article in English | MEDLINE | ID: mdl-34150039

ABSTRACT

OBJECTIVE: Traditional Chinese medicine has been increasingly used in the prevention and treatment of gastric cancer, especially in application of compound Chinese medicine. The aim of this study was to investigate the effect of Qi Ling decoction (QLD) on the invasion and metastasis of gastric cancer and its related signaling pathways at the cellular and molecular level in vitro, and explore the mechanism of QLD. METHODS: Scratch assay, transwell assay, and adhesion experiments were used to study the effects of QLD and its compounds on gastric cancer. Western blot was employed to detect expression of the PI3K/Akt pathway after administration of QLD. RESULTS: QLD can significantly inhibit the invasion, migration, and adhesion of gastric cancer cells in vitro. The main chemical components of QLD (diosgenin, catechins, and calycosin) can also inhibit the invasion, migration and adhesion of gastric cancer cells. Furthermore, QLD inhibits MMP-9 and affects gastric cancer cell metastasis through the PI3K/Akt pathway. CONCLUSION: QLD and its three main chemical components can inhibit the invasion, migration, and adhesion of gastric cancer cells, and the mechanism may be related to the PI3K/Akt pathway.

15.
Article in English | MEDLINE | ID: mdl-33953786

ABSTRACT

OBJECTIVE: To explore the mechanism of action of Citri Reticulatae Pericarpium-Pinelliae Rhizoma (CRP-PR) in treating gastric cancer (GC) by using pharmacology network. METHODS: Based on oral bioavailability and drug-likeness, the main active components of CRP-PR were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). DisGeNET Database was used to establish target databases for GC. Cytoscape software was used to construct a visual interactive network diagram of "Active Component-Target" and screen out the key targets. The STRING database was used to construct a protein interaction network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the key targets. Additionally, TCGA and HPA databases were used for key target verification. RESULTS: Thirty-seven active components of CRP-PR were screened. The results of network analysis showed that the main components include 8-octadecenoic acid, stigmasterol, ferulic acid, and naringenin of the CRP-PR herb pair. The key targets of the PPI network mainly involved GAPDH, MAPK3, JUN, STAT3, GSK3B, SIRT1, ERBB2, and SMAD2. GO enrichment analysis involves 540 biological processes, 118 cellular components, and 171 molecular functions. CRP-PR components were predicted to exert their therapeutic effect on the tumor signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and estrogen signaling pathway. The validation of the key genes in the TCGA and HPA database showed that most of the key target verification results were consistent with this article. CONCLUSION: CRP-PR can treat GC by mediating PI3K-Akt signal pathway, MAPK signal pathway, and other biological processes such as tumor cell proliferation, apoptosis, and vascular regeneration, which embodies the synergistic effect of multi-components, multi-targets, and multi-channels, and provides the theoretical basis and research ideas for further study of CRP-PR in treating GC. 8-octadecenoic acid, stigmasterol, ferulic acid, and naringenin may be the material basis for the treatment of GC.

16.
Sci Rep ; 11(1): 1905, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479376

ABSTRACT

Sparganii rhizoma (SL) has potential therapeutic effects on gastric cancer (GC), but its main active ingredients and possible anticancer mechanism are still unclear. In this study, we used HPLC-Q-TOF-MS/MS to comprehensively analyse the chemical components of the aqueous extract of SL. On this basis, a network pharmacology method incorporating target prediction, gene function annotation, and molecular docking was performed to analyse the identified compounds, thereby determining the main active ingredients and hub genes of SL in the treatment of GC. Finally, the mRNA and protein expression levels of the hub genes of GC patients were further analysed by the Oncomine, GEPIA, and HPA databases. A total of 41 compounds were identified from the aqueous extract of SL. Through network analysis, we identified seven main active ingredients and ten hub genes: acacetin, sanleng acid, ferulic acid, methyl 3,6-dihydroxy-2-[(2-hydroxyphenyl) ethynyl]benzoate, caffeic acid, adenine nucleoside, azelaic acid and PIK3R1, PIK3CA, SRC, MAPK1, AKT1, HSP90AA1, HRAS, STAT3, FYN, and RHOA. The results indicated that SL might play a role in GC treatment by controlling the PI3K-Akt and other signalling pathways to regulate biological processes such as proliferation, apoptosis, migration, and angiogenesis in tumour cells. In conclusion, this study used HPLC-Q-TOF-MS/MS combined with a network pharmacology approach to provide an essential reference for identifying the chemical components of SL and its mechanism of action in the treatment of GC.


Subject(s)
Curcuma/chemistry , Drugs, Chinese Herbal/chemistry , Rhizome/chemistry , Stomach Neoplasms/drug therapy , Apoptosis/drug effects , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Medicine, Chinese Traditional , Molecular Docking Simulation , Neoplasm Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Protein Interaction Maps/drug effects , Signal Transduction/drug effects , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tandem Mass Spectrometry
17.
Cancer Manag Res ; 12: 12385-12394, 2020.
Article in English | MEDLINE | ID: mdl-33293864

ABSTRACT

Chemotherapy is the main clinical treatment method of gastric cancer. Multidrug resistance (MDR) has become a common phenomenon with the development of tumors, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of survival rate of advanced gastric cancer. Therefore, the exploration of MDR reversal agents for gastric cancer is the focus and also the difficulty of current treatment. Currently, the researches on the mechanisms of drug resistance in gastric cancer have been continuously deepened, which reveal different pathways and targets of MDR, laying a solid foundation for studying reversal agents. As a kind of natural medicine, traditional Chinese medicine (TCM) owns the characteristics of low toxicity, high safety and effectiveness. It can inhibit the occurrence, growth and metastasis of tumors, and reverse MDR via multiple pathways and mechanisms, the pathological function of which has become a research hotspot in recent years. TCM reversers are mainly divided into Chinese medicine monomers, Chinese patent medicines, and Chinese herbal compounds. With certain quantity and advantage, TCM reversers for MDR play an important role in the clinical treatment and show great potential in gastric cancer.

18.
BMC Complement Med Ther ; 20(1): 337, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33167958

ABSTRACT

BACKGROUND: The exploration of new therapeutic agents targeting 5-Fu resistance may open a new opportunity to gastric cancer treatment. The objective is to establish a 5-Fu resistant gastric cancer cell line and observe the effect of Jianpi Yangwei decoction (JPYW) on its apoptosis and drug-resistance related proteins. METHODS: MTT assay was used to measure the effect of JPYW on the BGC823 cells proliferation, and the apoptosis was observed by flow cytometry and Hoechst fluorescence staining. The BGC823 xenograft tumor nude mice models were established, the apoptosis was detected by Tunel method. BGC-823/5-Fu was established by repeated low-dose 5-Fu shocks, the drug resistance index and proliferation were detected by the MTT assay; MDR1 mRNA was detected by real-time RT-PCR; Western blot was used to detect the ratio of p-AKT to AKT; The BGC823/5-Fu xenograft tumor nude mice models were established and apoptosis was measured. The expressions of MRP1, MDR1, ABCG2, AKT, p-AKT, caspase-3 and bcl-2 were detected by immunohistochemistry and the AKT mRNA expression was detected by real-time RT-PCR. RESULTS: JPYW induced apoptosis in BGC823 cells; Drug-resistant cell line BGC-823/5-Fu was sucessfully established; JPYW induced apoptosis of BGC823/5-Fu cells, down-regulated the expression of MRP1, MDR1 and ABCG2 in vitro and in vivo, and further decreased MDR1 expression when combined with pathway inhibitor LY294002 (P < 0.05); JPYW down-regulated the ratio of p-AKT to AKT in vitro in a dose-dependent manner, the same as after the combination with LY294002 (P < 0.05). CONCLUSION: JPYW can induce apoptosis of BGC823 and BGC823/5-Fu cells, and down-regulate the expression of MDR1, MRP1, ABCG2 in vitro and in vivo. Its in vitro effect is related to the PI3K/AKT signaling pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Medicine, Chinese Traditional/methods , Stomach Neoplasms/drug therapy , Animals , Cell Line, Tumor , Disease Models, Animal , Fluorouracil , Humans , Male , Mice , Mice, Nude
19.
Medicine (Baltimore) ; 99(48): e23417, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33235121

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the top 10 malignant tumors worldwide and poses a great threat to human life and health, the prevention and treatment of which has become the focus and difficulty of medical research. With its unique advantages, traditional Chinese medicine (TCM) is widely used in the prevention and treatment of postoperative recurrence and metastasis of GC as well as the improvement of patients' quality of life. The aim of this study is to elucidate the curative effect and the underlying mechanism of Yiqi Huayu Jiedu (YQHYJD) decoction. METHODS/DESIGN: This is a prospective, multicenter, randomized controlled trial continuing 3 years. Two hundred ninety-eight eligible patients will be randomly divided into 2 groups, the chemotherapy combined with placebo and the chemotherapy combined with YQHYJD group at a ratio of 1:1. All patients will receive the treatment for 6 months and follow up for 3 years. The primary outcomes are disease-free survival, and 1-year, 2-year, 3-year progression-free survival rate, while the secondary outcomes are tumor makers, TCM syndrome score, quality of life score, overall chemotherapy completion rate, intestinal flora diversity test, immune function (T, B lymphocyte subsets and NK cells) test. The Security index includes blood, urine and stool routine, electrocardiogram, liver function (ALT), and renal function (BUN, Scr). All of these outcomes will be analyzed at the end of the trial. DISCUSSION: This research will provide the valuable evidence for the efficacy and safety of Yiqi Huayu Jiedu decoction in postoperative GC. Furthermore, it will be helpful to form a higher level of evidence-based medical basis for TCM in the treatment of GC recurrence and metastasis. TRIAL REGISTRATION: ChiCTR2000039038.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Stomach Neoplasms/drug therapy , Biomarkers, Tumor/analysis , Chemotherapy, Adjuvant , Disease-Free Survival , Gastrointestinal Microbiome , Humans , Multicenter Studies as Topic , Neoplasm Metastasis/prevention & control , Neoplasm Recurrence, Local/prevention & control , Progression-Free Survival , Quality of Life , Randomized Controlled Trials as Topic , Stomach Neoplasms/surgery
20.
Article in English | MEDLINE | ID: mdl-32908569

ABSTRACT

OBJECTIVES: This network meta-analysis (NMA) was designed to assess the comparative effectiveness and safety of oral Chinese patent medicines combined with chemotherapy for gastric cancer on the National Basic Medical Insurance Drugs List of China. METHODS: A comprehensive literature search was performed in seven electronic databases from their inception to February 25, 2020, aiming to collect all related randomized controlled trials (RCTs) to evaluate the effectiveness and safety of oral Chinese patent medicines as an adjuvant for gastric cancer. Two researchers independently screened the literature, extracted data, and assessed the risk of bias of included studies using the Cochrane Risk of Bias Scale. NMA was then performed by using STATA 16.0 software and ADDIS 1.16.8 software. RESULTS: Finally, 30 RCTs were included, involving seven kinds of oral Chinese patent medicines, with a total of 2602 patients. For improvement of clinical efficacy, Bazhen granule combined with chemotherapy was ranked first for effectiveness, followed by the Cinobufacin capsule combined with chemotherapy and Xiao'aiping tablet combined with chemotherapy. Meanwhile, Bazhen granules combined with chemotherapy also were ranked first in reducing gastrointestinal reactions. In terms of improving performance status, the Xiao'aiping tablet was the best and significantly better than other oral Chinese patent medicines. Besides, the Zhenqi Fuzheng granule combined with chemotherapy was best for reducing the incidence of leucopenia. CONCLUSIONS: Since only one RCT of Bazhen granule was included in this study for analysis, its statistical efficiency is low. Therefore, this study recommends that the Cinobufacin capsule combined with chemotherapy should be a priority in improving clinical efficacy. In terms of improving patients' quality of life, Xiao'aiping tablet is the best choice. Safety was best for Zhenqi Fuzheng granule and Bazhen granule combined with chemotherapy. Limited by the quantity, quality, and possible bias of included studies, the above conclusions need to be further verified by more high-quality RCTs.

SELECTION OF CITATIONS
SEARCH DETAIL