Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627650

ABSTRACT

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Subject(s)
Acer , Transcriptome , Humans , Gene Expression Profiling , Acer/genetics , Acer/metabolism , Fatty Acids, Unsaturated/metabolism , Seeds , Metabolome , Plant Oils/metabolism
2.
J Food Sci ; 87(9): 3925-3937, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35904249

ABSTRACT

Acer truncatum seed oil (ATSO) contains abundant unsaturated fatty acids, with significant quantities of nervonic acid (NA, > 5%), which was authenticated as a new food resource in China. For the sake of minimizing animal consumption and the importance of NA for human health, extraction of NA from plants has become a research hotspot. In the present study, three extraction factors were determined to significantly influence the saponification reaction based on single-factor experiments: NaOH dosage, reaction time, and reaction temperature. These three factors were used to further optimize the saponification process through the response surface methodology, and the highest yield of mixed fatty acids was 83.12%. Moreover, the activation energy (40.8228 kJ/mol), the pre-exponential factor [2.568 × 106 m3 /(kmol·min)], and the kinetic equation [rA = kcA cB = 2.568 × 106 ·exp(- 4970 . 1 T ) $\frac{{{\rm{4970}}{\rm{.1}}}}{{\rm{T}}})$ cA cB ] of the ATSO saponification reaction were determined by combining the chemical reaction rate equation of the elementary reaction, the Arrhenius equation, and the NaOH concentration in the substrate. Finally, the mixed fatty acids of ATSO were crystallized by triple-stage low-temperature crystallization, and we achieved 25.05% purity for NA. This study provides a technological basis and strategy for specific fatty acid production from ASTO, as well as other vegetable oils important in the field of food and health supplement products. PRACTICAL APPLICATION: Nervonic acid (NA) is an essential component of neural cells and neural tissue, and it is vital for maintaining the normal work of nerve tissues in organisms and promotes neurodevelopment. NA has traditionally been mainly obtained from shark hunting, which is now restricted due to an international ban on shark fishing. The alternative way to produce NA cheaply and in large quantities is from plant sources. The techniques utilized in this study provide an effective method of NA separation from Acer truncatum seed oil for industrial production.


Subject(s)
Acer , Acer/chemistry , Crystallization , Fatty Acids/analysis , Fatty Acids, Monounsaturated , Humans , Kinetics , Plant Oils/chemistry , Seeds/chemistry , Sodium Hydroxide , Technology
3.
Plant Sci ; 317: 111189, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35193738

ABSTRACT

Paeonia ostii is an authorized novel vegetable oil crop due to its seeds rich in unsaturated fatty acids (UFAs) especially α-linolenic acid (ALA), which overweight the current available edible oil. However, little is known on the regulation mechanism of UFAs biosynthesis during its seed development. Here, we used transcriptome and proteome data combining phytochemistry means to uncover the relationship between abscisic acid (ABA) signaling and UFAs biosynthesis during P. ostii seed development. Based on transcriptome and proteome analysis, two desaturases of omega-6 and omega-3 fatty acid, named as PoFAD2 and PoFAD3 responsible for ALA biosynthesis were identified. Then, an ABSCISIC ACID-INSENSITIVE 5 (ABI5) proteins was identified as an upstream transcriptional factor, which activated the expression of PoFAD3 instead of PoFAD2. Moreover, silencing of PoABI5 repressed the response of PoFAD3 to ABA. This study provides the first view on the connection between the function of ABA signaling factors and ALA biosynthesis in the P. ostii seed, which lays the foundation for studies on the regulatory mechanism of ABA signaling involved in the UFAs synthesis during seeds development, meanwhile, it will shed light on manipulation of ALA content for satisfying human demands on high quality of edible oil or healthy supplement.


Subject(s)
Fatty Acids, Omega-3 , Paeonia , Abscisic Acid/metabolism , Fatty Acids/metabolism , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/analysis , Paeonia/metabolism , Seeds/metabolism
4.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209113

ABSTRACT

Acer truncatum Bunge is now widely cultivated throughout the world. Fatty acid synthase (FAS) is a potential target in the treatment of both obesity and cancer. Only a few FAS inhibitors have been reported. In this study, the inhibitory effect of A. truncatum seed coat (ESA) on FAS and the inhibition mechanisms were investigated using a FAS activity assay and an enzyme kinetics study. The main chemicals of ESA were analyzed with UPLC-MS/MS. The effects of ESA on 3T3-L1 adipocyte differentiation and lipid accumulation were investigated using Oil red O staining. We first identified seven main compounds (quinic acid, malic acid, gentisic acid, procyanidin dimer, procyanidin trimer, catechin, and quercetin) from 50% ethanol extracts of seed coats of A. truncatum (ESAs), which were then found to inhibit 3T3-L1 adipocyte differentiation at the concentration of 50 µg/mL. ESA obviously reduced the visible triglyceride droplets accumulation, and dramatically decreased the number of the adipocytes at a comparatively high concentration. It is suggested that the effects are due to the inhibition of FAS by ESA; FAS activity is inhibited by ESA at a half inhibition concentration (IC50) of 0.57 µg/mL, which is lower than that of classically known FAS inhibitors. Meanwhile, ESA displayed different inhibition kinetics and reacting sites for FAS. These results provide new clues for the development of novel products for obesity treatment and a scientific basis for the full use of byproducts for future industrial production of vegetable oil.


Subject(s)
Acer/chemistry , Cell Differentiation/drug effects , Lipid Metabolism/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Seeds/chemistry , Adipocytes/drug effects , Animals , Chromatography, High Pressure Liquid , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fatty Acid Synthases/metabolism , Mice , Molecular Structure , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
5.
Food Funct ; 13(2): 846-856, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34989366

ABSTRACT

Tree peonies are well-known horticultural and medicinal plants. The tree peony seeds, as emerging woody oil crops, recently have attracted great attention for their metabolites and bioactivities. In this study, the phytochemicals isolated from tree peony seed coats were systematically investigated. Seven polyphenolics were separated and prepared, mainly belonging to resveratrol derivatives. There was a great variation in the seed coat polyphenolic content among eight Paeonia species, and the contents of the resveratrol trimers and dimers were significantly higher in the seed coats of Paeonia ostii than other species. Based on the HPLC fingerprint characteristics and chemometric analysis, a clear discrimination among Paeonia plants was found, including the composition patterns and contents of the constituents. Moreover, the characteristic phytochemicals (vateriferol and trans-ε-viniferin) could significantly reduce the starch-mediated levels of postprandial blood glucose in diabetic/normal mice. In addition, in vitro enzyme tests showed that the two compounds could effectively and competitively inhibit α-glucosidase, with the IC50 values of 3.01 and 7.75 µM, respectively, indicating that vateriferol and trans-ε-viniferin could be therapeutic potential agents for hyperglycemia and diabetes mellitus.


Subject(s)
Blood Glucose/drug effects , Paeonia/chemistry , Resveratrol/analogs & derivatives , Resveratrol/pharmacology , Seeds/chemistry , Animals , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Mice , Molecular Docking Simulation , Resveratrol/chemistry , Starch/administration & dosage , alpha-Glucosidases/chemistry , alpha-Glucosidases/metabolism
6.
Front Nutr ; 8: 679129, 2021.
Article in English | MEDLINE | ID: mdl-34222303

ABSTRACT

Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1ß, inhibiting kappa-B kinase ß (IKKß), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKß/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

7.
J Ethnopharmacol ; 273: 113985, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33667571

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonia plants have been widely used as traditional Chinese medicinal materials for more than 2,000 years in the treatment of cardiovascular, extravasated blood and female genital diseases; paeoniflorin and paeonol have been implicated as the plants' primary active ingredients. AIM OF THE STUDY: Previous studies have been singularly focused on the chemical constituents and content variation of the Paeonia roots in the advancement of traditional Chinese medicine, with the plants' stems and leaves considered useless. This study aims to explore the chemical constituents, content variation, and antioxidant capacity in Paeonia stems and leaves for the future utilization of traditional Chinese medicine, given that current practices of digging and trade endanger Paeonia in the wild. MATERIALS AND METHODS: Herein, secondary metabolites from the stems and leaves from six developmental stages of the annual growth cycle of Paeonia ostii T. Hong & J. X. Zhang, P. 'Hexie', and P. lactiflora Pall. were qualitatively and quantitatively analyzed via high-performance liquid chromatography with a diode array detector (HPLC-DAD) and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). Antioxidant capacity at each stage was also evaluated by various free radical scavenging assays. RESULTS: A total of 24 metabolites were detected and identified, including 5 monoterpene glycosides, 4 tannins, 5 phenols, 9 flavonoids, and paeonol. Excepting paeonol and the phenols, the levels of each metabolite category were significantly higher in the leaves than the stems during all developmental stages. The paeoniflorin content in the P. ostii leaves was the highest during the first developmental stage and higher than the standards of the Chinese Pharmacopoeia, suggesting it to be the optimal harvesting stage for medicinal uses. Notably, the antioxidant capacity of the leaves was significantly greater than in the stems, particularly for the leaves of P. 'Hexie'. CONCLUSION: Our study indicates that the leaves of P. 'Hexie' have the potential to be a worthy medicinal substitute to Paeonia roots due to their high monoterpene glycosides, phenols, and flavonoids as well as their strong antioxidant capacity. Further, this study provides a theoretical basis for the development and utilization of non-root Paeonia plant sections as medicinal plant resources.


Subject(s)
Antioxidants/pharmacology , Paeonia/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Antioxidants/chemistry , Flavonoids/chemistry , Glycosides/chemistry , Paeonia/classification , Phenols/chemistry , Phytochemicals/analysis , Phytotherapy , Plants, Medicinal , Species Specificity , Tannins/chemistry
8.
Foods ; 9(1)2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31905710

ABSTRACT

Paeonia ostii is an important woody oil plant cultivated in China on a large scale. Its seed oil is enriched with unsaturated fatty acids and a high content of alpha-linolenic acid (ALA), which are beneficial to human health. The aim of this research is to determine the qualitative traits characteristic of P. ostii seed from various production areas in China. In this study, seed quality traits were evaluated on the basis of proximate composition, content of fatty acids, tocopherol, secondary metabolites, and the antioxidant activity of seed coat (PSC) and kernel (PSK). A high content of total fatty acids (298.89-399.34 mg g-1), crude protein (16.91%-22.73%), and total tocopherols (167.83-276.70 µg g-1) were obtained from PSK. Significant differences were found in the content of palmitic acids (11.31-14.27 mg g-1), stearic acids (2.42-4.24 mg g-1), oleic acids (111.25-157.63 mg g-1), linoleic acids (54.39-83.59 mg g-1), and ALA (99.85-144.71 mg g-1) in the 11 main production areas. Eight and seventeen compounds were detected in PSC and PSK, respectively. A significantly higher content of total phenols was observed in PSC (139.49 mg g-1) compared with PSK (3.04 mg g-1), which was positively related to antioxidant activity. This study indicates that seeds of P. ostii would be a good source of valuable oil and provides a basis for seed quality evaluation for the production of edible oil and potential ALA supplements from the promising woody oil plant.

9.
J Agric Food Chem ; 57(18): 8496-503, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19711909

ABSTRACT

Tree peony flowers are edible and traditional Chinese medicine materials. In the present study, 26 flavonoids were identified and quantified in yellow flowers of tree peony by high-performance liquid chromatography with diode array detector (HPLC-DAD) and by HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MS). Seventeen of them were first reported in flowers of tree peony, and glycosides of kaempferol, luteolin, and apigenin as well as isosalipurposide were the main flavonoids investigated. Furthermore, the petal extracts showed high antioxidant activity according to DPPH*, ABTS*(+), and OH* scavenging assays and ferric reducing antioxidant power assay. There were significant correlations between antioxidant activity and both the total polyphenol content (determined by Folin-Ciocalteu method) and the total content of quercetin, kaempferol, and luteolin glycosides. This work is valuable for elucidation of phenolic composition in tree peony flowers and for further utilization of them as functional food and medicine materials.


Subject(s)
Antioxidants/analysis , Flavonoids/analysis , Flowers/chemistry , Paeonia/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Kaempferols/analysis , Luteolin/analysis , Phenols/analysis , Polyphenols , Quercetin/analysis , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL