Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Mol Ther ; 30(1): 105-118, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34174443

ABSTRACT

Myosin VI(MYO6) is an unconventional myosin that is vital for auditory and vestibular function. Pathogenic variants in the human MYO6 gene cause autosomal-dominant or -recessive forms of hearing loss. Effective treatments for Myo6 mutation causing hearing loss are limited. We studied whether adeno-associated virus (AAV)-PHP.eB vector-mediated in vivo delivery of Staphylococcus aureus Cas9 (SaCas9-KKH)-single-guide RNA (sgRNA) complexes could ameliorate hearing loss in a Myo6WT/C442Y mouse model that recapitulated the phenotypes of human patients. The in vivo editing efficiency of the AAV-SaCas9-KKH-Myo6-g2 system on Myo6C442Y is 4.05% on average in Myo6WT/C442Y mice, which was ∼17-fold greater than editing efficiency of Myo6WT alleles. Rescue of auditory function was observed up to 5 months post AAV-SaCas9-KKH-Myo6-g2 injection in Myo6WT/C442Y mice. Meanwhile, shorter latencies of auditory brainstem response (ABR) wave I, lower distortion product otoacoustic emission (DPOAE) thresholds, increased cell survival rates, more regular hair bundle morphology, and recovery of inward calcium levels were also observed in the AAV-SaCas9-KKH-Myo6-g2-treated ears compared to untreated ears. These findings provide further reference for in vivo genome editing as a therapeutic treatment for various semi-dominant forms of hearing loss and other semi-dominant diseases.


Subject(s)
Gene Editing , Hearing Loss , Animals , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/genetics , Hearing , Hearing Loss/genetics , Hearing Loss/therapy , Humans , Mice , RNA, Guide, Kinetoplastida
2.
Nature ; 553(7687): 217-221, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29258297

ABSTRACT

Although genetic factors contribute to almost half of all cases of deafness, treatment options for genetic deafness are limited. We developed a genome-editing approach to target a dominantly inherited form of genetic deafness. Here we show that cationic lipid-mediated in vivo delivery of Cas9-guide RNA complexes can ameliorate hearing loss in a mouse model of human genetic deafness. We designed and validated, both in vitro and in primary fibroblasts, genome editing agents that preferentially disrupt the dominant deafness-associated allele in the Tmc1 (transmembrane channel-like gene family 1) Beethoven (Bth) mouse model, even though the mutant Tmc1Bth allele differs from the wild-type allele at only a single base pair. Injection of Cas9-guide RNA-lipid complexes targeting the Tmc1Bth allele into the cochlea of neonatal Tmc1Bth/+ mice substantially reduced progressive hearing loss. We observed higher hair cell survival rates and lower auditory brainstem response thresholds in injected ears than in uninjected ears or ears injected with control complexes that targeted an unrelated gene. Enhanced acoustic startle responses were observed among injected compared to uninjected Tmc1Bth/+ mice. These findings suggest that protein-RNA complex delivery of target gene-disrupting agents in vivo is a potential strategy for the treatment of some types of autosomal-dominant hearing loss.


Subject(s)
CRISPR-Associated Proteins/administration & dosage , Gene Editing/methods , Genes, Dominant/genetics , Genetic Therapy/methods , Hearing Loss/genetics , Acoustic Stimulation , Alleles , Animals , Animals, Newborn , Auditory Threshold , Base Sequence , CRISPR-Associated Proteins/metabolism , CRISPR-Associated Proteins/therapeutic use , CRISPR-Cas Systems , Cell Survival , Cochlea/cytology , Cochlea/metabolism , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Female , Fibroblasts , Hair Cells, Auditory/cytology , Hearing Loss/physiopathology , Hearing Loss/prevention & control , Humans , Liposomes , Male , Membrane Proteins/genetics , Mice , Reflex, Startle
3.
Oncotarget ; 8(34): 57149-57162, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28915661

ABSTRACT

Being a neurodegenerative disorder, Alzheimer's disease (AD) is the one of the most terrible diseases. And acetylcholinesterase (AChE) is considered as an important target for treating AD. Acetylcholinesterase inhibitors (AChEI) are considered to be one of the effective drugs for the treatment of AD. The aim of this study is to find a novel potential AChEI as a drug for the treatment of AD. In this study, instead of using the synthetic compounds, we used those extracted from plants to investigate the interaction between floribundiquinone B (FB) and AChE by means of both the experimental approach such as fluorescence spectra, ultraviolet-visible (UV-vis) absorption spectrometry, circular dichroism (CD) and the theoretical approaches such as molecular docking. The findings reported here have provided many useful clues and hints for designing more effective and less toxic drugs against Alzheimer's disease.

SELECTION OF CITATIONS
SEARCH DETAIL