Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
World J Microbiol Biotechnol ; 37(11): 182, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34580746

ABSTRACT

Microalgae offer a promising source of biofuel and a wide array of high-value biomolecules. Large-scale cultivation of microalgae at low density poses a significant challenge in terms of water management. High-density microalgae cultivation, however, can be challenging due to biochemical changes associated with growth dynamics. Therefore, there is a need for a biomarker that can predict the optimum density for high biomass cultivation. A locally isolated microalga Cyanobacterium aponinum CCC734 was grown with optimized nitrogen and phosphorus in the ratio of 12:1 for sustained high biomass productivity. To understand density-associated bottlenecks secretome dynamics were monitored at biomass densities from 0.6 ± 0.1 to 7 ± 0.1 g/L (2 to 22 OD) in batch mode. Liquid chromatography coupled with mass spectrometry identified 880 exometabolites in the supernatant of C. aponinum CCC734. The PCA analysis showed similarity between exometabolite profiles at low (4 and 8 OD) and mid (12 and 16 OD), whereas distinctly separate at high biomass concentrations (20 and 22 OD). Ten exometabolites were selected based on their role in influencing growth and are specifically present at low, mid, and high biomass concentrations. Taking cues from secretome dynamics, 5.0 ± 0.5 g/L biomass concentration (16 OD) was optimal for C. aponinum CCC734 cultivation. Further validation was performed with a semi-turbidostat mode of cultivation for 29 days with a volumetric productivity of 1.0 ± 0.2 g/L/day. The secretomes-based footprinting tool is the first comprehensive growth study of exometabolite at the molecular level at variable biomass densities. This tool may be utilized in analyzing and directing microalgal cultivation strategies and reduction in overall operating costs.


Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/metabolism , Microalgae/growth & development , Microalgae/metabolism , Secretome/metabolism , Biofuels , Biomass , Cell Culture Techniques , Microalgae/cytology , Nitrogen , Phosphorus , Water
2.
ACS Omega ; 5(29): 18148-18154, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32743189

ABSTRACT

Poly(vinylpyrrolidone) (PVP-K90) is widely used to manage dry eye syndrome (DES). The marketed eye drop solutions (high dose) need frequent instillation, affecting the routine lifestyle of patients. PVP-K90-laden contact lenses can be used to overcome the limitations of eye drop solutions (low bioavailability and frequent instillation). However, the conventional methods of PVP-K90 loading show poor loading capacity and short duration of effect. In the present study, we have developed PVP-K90-coated contact lenses via a short curing approach to increase the PVP-K90 loading capacity with a sustained release profile to manage dry eye syndrome. PVP-K90 was loaded by a soaking method (SM-PVP), direct loading (during fabrication, DL-PVP), a combination of soaking and direct loading (DL-SM-PVP), and a novel coating process (SM-PVP-C and DL-SM-PVP-C). The swelling studies suggested improvement in the water uptake (hydration) property of the contact lenses due to the presence of PVP-K90. The optical transparency was within an acceptable range. The in vitro release of PVP-K90 was in the following order: PVP-coated contact lens (168 h) > DL-SM-PVP (168 h) > DL-PVP (96 h) > SM-PVP (72-96 h). PVP-coated contact lenses showed a high burst effect (lubricating effect) and sustained release (3161-448 ng/h between 24 and 168 h) due to high PVP loading/coating in comparison to the uncoated respective contact lenses (964-113 ng/h between 24 and 96 h). In animal studies, the PVP-K90-coated contact lens showed higher tear volume in comparison to the respective uncoated contact lenses and an eye drop solution. This study demonstrates a novel approach of coating a high amount of PVP-K90 on contact lenses for sustained release to manage several ocular diseases like dry eye syndrome, conjunctivitis, and other ocular injuries.

3.
Mater Sci Eng C Mater Biol Appl ; 112: 110885, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32409042

ABSTRACT

A fixed combination of bimatoprost/timolol eye drop solution is used to manage the elevated intra-ocular pressure in glaucoma patients, including individuals whose condition is poorly controlled by monotherapy. Eye drop solutions are generally given in high dose, due to poor ocular bioavailability. The high ocular dose of bimatoprost and timolol lead to hyperaemia and systemic cardiac side effects respectively. Here, we introduce multiple implant-laden contact lenses (IM) to passively deliver timolol, bimatoprost and hyaluronic acid at therapeutically relevant doses without high burst release. The drug-loaded implants were individually implanted in the outer periphery of the silicone contact lenses. Atomic force microscopy showed the smooth surface of the implant contact lens, as the implants were inside the contact lens matrix. The implant lens (IM) showed major loss of drugs [timolol = 60.60%, bimatoprost = 61.75% and HA = 46.03%] during the monomer extraction and wet sterilization, while the option of dry radiation sterilization (IM-R lens) and hydration for 24 h prior to use showed relatively lower loss of drugs [timolol = 16.87%, bimatoprost = 47.95% and HA = 24.41%]. The in-vitro drugs release data of IM-R lens, showed sustained release for 72 h, with low burst release in comparison to the soaked (SM) and direct drug-laden contact lenses (DL). The in vivo drug release data in the rabbit tear fluid showed sustained release using IM-R lens in comparison to the SM lens and eye drop therapy. The burst release with the IM-R lens was many folds reduced, which could bypass the side effects associated with multiple eye drop therapy. The in vivo pharmacodynamic study in the rabbit model showed peak and valley profile with multiple eye drop therapy, while IM-R lens showed prolong reduction in intra ocular pressure (IOP) for 120 h. The study demonstrates the application of implantation technology to deliver multiple drug through contact lenses to treat glaucoma.


Subject(s)
Bimatoprost/metabolism , Contact Lenses , Drug Carriers/chemistry , Silicones/chemistry , Timolol/metabolism , Animals , Bimatoprost/administration & dosage , Bimatoprost/chemistry , Drug Implants/chemistry , Drug Liberation , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Hyaluronic Acid/metabolism , Intraocular Pressure , Rabbits , Surface Properties , Timolol/administration & dosage , Timolol/chemistry
4.
Colloids Surf B Biointerfaces ; 185: 110632, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31735422

ABSTRACT

Lidocaine is widely used as a local anaesthetic in the clinical practice to manage pre- and post-operative pain, skin burns, etc. However, the short duration of action (< 2 h) of marketed dosage forms limit their ability to meet clinical needs. Herein, we prepared a lidocaine-tPP(tri potassium phosphate)-complex loaded microemulsion to achieve greater penetration, followed by destabilization of microemulsion in the skin layer to precipitate oil-complex to produce a depot effect in the skin for prolonging the effects of anaesthesia. The lidocaine-tPP-complex-microemulsion was compared with lidocaine base loaded microemulsion, marketed ointment USP and lidocaine HCl. The pseudo ternary phase diagrams at three Smix ratios (1:2, 1:3 and 1:4; Pluronic F127: PEG 400) were constructed using Capmul MCM C8 EP as oil phase. The Smix at 1:4 ratio showed large microemulsion area in comparison to 1:2 and 1:6 ratio. The lidocaine base (LD-1:4-ME10O45SM and LD-1:4-ME20O45SM) and lidocaine-tPP-complex (LDC-1:4-ME10O45SM and LDC-1:4-ME20O45SM) loaded microemulsion batches (1:4 ratio) were thermodynamically stable. The ex vivo diffusion study showed sustained release up to 12 h with microemulsion batches, in comparison to lidocaine HCl (4 h) and ointment base (7 h). The selected LDC-1:4-ME20O45SM batch was non-irritating on the rabbit skin. In drug retention studies, LD-1:4-ME20O45SM and LDC-1:4-ME20O45SM batches showed 2.68- and 3.93-fold greater lidocaine retention in comparison to ointment USP. The radiant heat tail-flick test showed prolong local anaesthesia using LDC-1:4-ME20O45SM in comparison to ointment USP. The findings suggest that lidocaine-tPP-complex loaded microemulsion could be a potential strategy for providing prolong local anaesthesia.


Subject(s)
Anesthesia, Local , Emulsions/chemistry , Lidocaine/pharmacology , Polyphosphates/pharmacology , Analgesics/pharmacology , Anesthetics, Local/pharmacology , Animals , Coloring Agents/chemistry , Diffusion , Electric Conductivity , Goats , Hydrogen-Ion Concentration , Male , Particle Size , Phase Transition , Rabbits , Rats, Wistar , Skin/drug effects , Skin Irritancy Tests , Static Electricity , Thermodynamics , Viscosity
5.
Int J Pharm ; 548(1): 139-150, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29960036

ABSTRACT

Currently, bacterial conjunctivitis is treated by frequent administration of antibiotic eye drop solutions, which is tedious and patient noncompliant. Contact lenses could be ideal medical devices to sustain the release of ophthalmic drugs, but the incorporation of the latter can alter the optical and physical properties of the lenses. In addition, many contact lens users have reported the pink eye syndrome, making them unsuitable as ocular medical devices. In the present study, we have designed a novel type of lenses containing semi-circular rings loaded with moxifloxacin HCl (a broad spectrum antibiotic) and hyaluronic acid (a comfort agent), respectively, in order to treat bacterial conjunctivitis without altering the critical lens properties. The drug loaded rings were implanted separately within the periphery of the contact lenses using the modified cast moulding technology. The atomic force microscopy report showed an average roughness of 22.27 nm for the implant lens, which was significantly lower in comparison to the marketed Freshlook® (116.27 nm) contact lens. The major amount of moxifloxacin HCl was leached (68.16-74.55%) during the monomer extraction and wet sterilization (autoclave) steps; hence the lenses were terminally sterilized by radiation and packaged under dry condition (dehydrated). The in vitro release data showed release for moxifloxacin HCl and hyaluronic acid up to 96 h. The in vivo drug release studies showed significant improvement [>MIC for Staphylococcus aureus] in the drug residence time in comparison to the eye drop therapy. The in vivo efficacy study in the staphylococcus aureus induced conjunctivitis showed equivalent healing effect with the single implant contact lens in comparison to the frequent high dose eye drop therapy. The study demonstrated the successful application of the implantation technology to co-deliver moxifloxacin HCl and hyaluronic acid from the contact lenses for the extended period of time to treat conjunctivitis.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Conjunctivitis, Bacterial/drug therapy , Contact Lenses , Drug Delivery Systems , Fluoroquinolones/administration & dosage , Hyaluronic Acid/administration & dosage , Animals , Anti-Bacterial Agents/chemistry , Drug Liberation , Female , Fluoroquinolones/chemistry , Hyaluronic Acid/chemistry , Male , Moxifloxacin , Rabbits , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL