Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Chin J Integr Med ; 30(1): 75-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37340205

ABSTRACT

Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Flavonoids/pharmacology , Flavonoids/therapeutic use , Flavonoids/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Dietary Supplements , Antioxidants/pharmacology , Neoplasms/drug therapy
2.
J Tradit Complement Med ; 12(6): 608-618, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325245

ABSTRACT

Introduction: Moringa oleifera is known as a 'natural nutrition of the tropics' because it provides vital nutritional supplements and a variety of pharmacological benefits. The focus of this study was to elucidate the dose dependent effects of Moringa oleifera leaf (MOL) extract on the growth of the human osteoblast-like osteosarcoma SaOS-2 cell line and primary osteoblast cells. Methods: Trypan blue & tetrazolium assay, intracellular ROS generation, chromatin condensation, cell cycle analysis, alkaline phosphatase (ALP), mineralization, and osteogenic gene expression were tested on both treated and untreated osteosarcoma SaOS-2 cells. Results: As revealed by cell viability assay, growth activity was observed at concentrations 25 and 50 µg/mL of MOL extract, whereas 100 and 200 µg/mL doses decreased the proliferation activity, resulting in ROS production and chromatin condensation. Cell cycle study revealed that MOL extract at 50 and 100 µg/mL concentrations arrested the cells in the G2/M phase. Low doses increased the ALP levels, mineralization, and expression of the bone morphogenetic protein 2 (BMP2) and runt-related transcription factor 2 (Runx2) genes in osteoblast-like SaOS-2 cells, however, high doses inhibited the proliferation properties of MOL extract. Through AutoDock Vina and iGEMDOCK 2.1, the interaction of active components of MOL, such as ß-sitosterol, quercetin and kaempferol, with BMP2 and Runx2 proteins revealed a reasonable binding affinity. Moreover, these components did not show any Lipinski's rule of five violation and showed predictable pharmacokinetic properties. Conclusion: The results of the biphasic dose-response of MOL extract on the growth activity of osteoblast-like SaOS-2 cells and in silico binding interface, may provide a therapeutic and/or preventive implication in prospective drug development.

3.
J Food Biochem ; 46(10): e14262, 2022 10.
Article in English | MEDLINE | ID: mdl-35796388

ABSTRACT

SARS-CoV-2 has been responsible for causing 6,218,308 deaths globally till date and has garnered worldwide attention. The lack of effective preventive and therapeutic drugs against SARS-CoV-2 has further worsened the scenario and has bolstered research in the area. The N-terminal and C-terminal RNA binding domains (NTD and CTD) of SARS-CoV-2 nucleocapsid protein represent attractive therapeutic drug targets. Naturally occurring compounds are an excellent source of novel drug candidates due to their structural diversity and safety. Ten major bioactive compounds were identified in ethanolic extract (s) of Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare, and Petroselinum crispum using HPLC and their cytotoxic potential was determined against cancer and normal cell lines by MTT assay to ascertain their biological activity in vitro. To evaluate their antiviral potential, the binding efficacy to NTD and CTD of SARS-CoV-2 nucleocapsid protein was determined using in silico biology tools. In silico assessment of the phytocomponents revealed that most of the phytoconstituents displayed a druglike character with no predicted toxicity. Binding affinities were in the order apigenin > catechin > apiin toward SARS-CoV-2 nucleocapsid NTD. Toward nucleocapsid CTD, the affinity decreased as apigenin > cinnamic acid > catechin. Remdesivir displayed lesser affinity with NTD and CTD of SARS-CoV-2 nucleocapsid proteins than any of the studied phytoconstituents. Molecular dynamics (MD) simulation results revealed that throughout the 100 ns simulation, SARS-CoV-2 nucleocapsid protein NTD-apigenin complex displayed greater stability than SARS-CoV-2 nucleocapsid protein NTD-cinnamic acid complex. Hence, apigenin, catechin, apiin and cinnamic acid might prove as effective prophylactic and therapeutic candidates against SARS-CoV-2, if examined further in vitro and in vivo. PRACTICAL APPLICATIONS: Ten major bioactive compounds were identified in the extract(s) of four medicinally important plants viz. Cinnamomum zeylanicum, Cinnamomum tamala, Origanum vulgare and Petroselinum crispum using HPLC and their biological activity was also evaluated against cancer and normal cell lines. Interestingly, while all extract(s) wielded significant cytotoxicity against cancer cells, no significant toxicity was found against normal cells. The outcome of the results prompted evaluation of the antiviral potential of the ten bioactive compounds using in silico biology tools. The present study emphasizes on the application of computational approaches to understand the binding interaction and efficacy of the ten bioactive compounds from the above plants with SARS-CoV-2 nucleocapsid protein N-terminal and C-terminal RNA binding domains in preventing and/or treating COVID-19 using in silico tools. Druglikeness and toxicity profiles of the compounds were carried out to check the therapeutic application of the components. Additionally, molecular dynamics (MD) simulation was performed to check the stability of ligand-protein complexes. The results provided useful insights into the structural binding interaction(s) that can be exploited for the further development of potential antiviral agents targeting SARS-CoV-2 especially since no specific therapy is still available to combat the rapidly evolving virus and the existing treatment is more or less symptomatic which makes search for novel antiviral agents all the more necessary and crucial.


Subject(s)
COVID-19 Drug Treatment , Catechin , Laurus , Origanum , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Apigenin , Cinnamates , Cinnamomum zeylanicum/metabolism , Dietary Supplements , Laurus/metabolism , Ligands , Petroselinum/metabolism , SARS-CoV-2
4.
Appl Biochem Biotechnol ; 194(12): 5918-5944, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35838886

ABSTRACT

Novel SARS-CoV-2 claimed a large number of human lives. The main proteins for viral entry into host cells are SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and spike receptor-binding domain bound with ACE2 (spike RBD-ACE2; PDB ID: 6M0J). Currently, specific therapies are lacking globally. This study was designed to investigate the bioactive components from Moringa oleifera leaf (MOL) extract by gas chromatography-mass spectroscopy (GC-MS) and their binding interactions with spike glycoprotein and spike RBD-ACE2 protein through computational analysis. GC-MS-based analysis unveiled the presence of thirty-seven bioactive components in MOL extract, viz. polyphenols, fatty acids, terpenes/triterpenes, phytosterols/steroids, and aliphatic hydrocarbons. These bioactive phytoconstituents showed potential binding with SARS-CoV-2 spike glycoprotein and spike RBD-ACE2 protein through the AutoDock 4.2 tool. Further by using AutoDock 4.2 and AutoDock Vina, the top sixteen hits (binding energy ≥ - 6.0 kcal/mol) were selected, and these might be considered as active biomolecules. Moreover, molecular dynamics simulation was determined by the Desmond module. Interestingly two biomolecules, namely ß-tocopherol with spike glycoprotein and ß-sitosterol with spike RBD-ACE2, displayed the best interacting complexes and low deviations during 100-ns simulation, implying their strong stability and compactness. Remarkably, both ß-tocopherol and ß-sitosterol also showed the drug- likeness with no predicted toxicity. In conclusion, these findings suggested that both compounds ß-tocopherol and ß-sitosterol may be developed as anti-SARS-CoV-2 drugs. The current findings of in silico approach need to be optimized using in vitro and clinical studies to prove the effectiveness of phytomolecules against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Moringa oleifera , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , beta-Tocopherol , Phytochemicals/pharmacology , Plant Leaves , Molecular Dynamics Simulation , Plant Extracts/pharmacology , Protein Binding
5.
BMC Complement Med Ther ; 22(1): 68, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35291987

ABSTRACT

BACKGROUND: Phoenix dactylifera L. has a diverse set of pharmacological properties due to its distinct phytochemical profile. The purpose of this study was to investigate the anticancer potential of Phoenix dactylifera seed extract (PDSE) in human breast cancer MDA-MB-231 and MCF-7 cells, as well as liver cancer HepG2 cells, and to investigate the anticancer efficacy in triple-negative MDA-MB-231 cells, followed by in silico validation of the molecular interaction between active components of PDSE and caspase-3, an apoptosis executioner protein . METHODS: In this study, human cancer cell lines were cultured and subsequently treated with 10 to 100 µg/mL of PDSE. MTT test was performed to determine the cell viability, MMP was measured using fluorescent probe JC-1, nuclear condensation was determined by Hoechst 33258 dye, Annexin V-FITC & PI staining and cell cycle analysis were evaluated through flow cytometer, and apoptotic markers were detected using western blotting. The bioactive agents in PDSE were identified using high-performance liquid chromatography (HPLC) analysis. The binding affinity was validated using molecular docking tools AutoDock Vina and iGEMDOCK v2.1. RESULTS: Cell viability data indicated that PDSE inhibited cell proliferation in both breast cancer cells and liver cancer cells. MDA-MB-231 cells showed maximum growth inhibition with an IC50 value of 85.86 µg/mL for PDSE. However, PDSE did not show any significant toxicity against the normal Vero cell line. PDSE induced MMP loss and formation of apoptotic bodies, enhanced late apoptosis at high doses and arrested cells in the S phase of cell cycle. PDSE activated the enzymatic activity of cleaved caspase-3 and caused the cleavage of poly-ADB ribose polymerase (PARP) protein. PDSE upregulated pro-apoptotic Bax protein markedly but  no significant effect on tumor suppressor protein p53, while it downregulated the anti-apoptotic Bcl-2 protein expression. HPLC analysis showed the presence of rutin and quercetin bioactive flavonols in ethanolic extract of PDS. Interestingly, both active components revealed a strong binding interaction with amino acid residues of caspase-3 (PDB ID: 2XYP; Hetero 4-mer - A2B2) protein. CONCLUSION: PDS could serve as a potential medicinal source for apoptotic cell death in human breast cancer cells and, thus, could be used as a promising and crucial candidate in anticancer drug development. This study warrants further in vivo research, followed by clinical investigation.


Subject(s)
Breast Neoplasms , Phoeniceae , Breast Neoplasms/drug therapy , Caspase 3/metabolism , Cell Line, Tumor , Female , Humans , Molecular Docking Simulation , Phoeniceae/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
6.
J Food Biochem ; 46(5): e14062, 2022 05.
Article in English | MEDLINE | ID: mdl-35043973

ABSTRACT

Therapeutic drugs based on natural products for the treatment of SARS-CoV-2 are currently unavailable. This study was conducted to develop an anti-SARS-CoV-2 herbal medicine to face the urgent need for COVID-19 treatment. The bioactive components from ethanolic extract of Moringa oleifera fruits (MOFs) were determined by gas chromatography-mass spectroscopy (GC-MS). Molecular-docking analyses elucidated the binding effects of identified phytocomponents against SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and human ACE2 receptor (PDB ID: 1R42) through the Glide module of Maestro software. GC-MS analysis unveiled the presence of 33 phytocomponents. Eighteen phytocomponents exhibited good binding affinity toward ACE2 receptor, and thirteen phytocomponents had a high affinity with spike glycoprotein. This finding suggests that the top 11 hits (Docking score ≥ -3.0 kcal/mol) could inhibit SARS-CoV-2 propagation. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. However, further studies are needed to validate their effects and mechanisms of action. PRACTICAL APPLICATIONS: Moringa oleifera (MO) also called "drumstick tree" has been used as an alternative food source to combat malnutrition and may act as an immune booster. GC-MS analysis unveiled that ethanolic extract of Moringa oleifera fruits (MOFs) possessed 33 active components of pyridine, aromatic fatty acid, oleic acid, tocopherol, methyl ester, diterpene alcohol, triterpene and fatty acid ester and their derivatives, which have various pharmacological and medicinal values. Virtual screening study of phytocomponents of MOF with human ACE2 receptor and SARS-CoV-2 spike glycoprotein exhibited good binding affinity. Based on molecular docking, the top 11 hits (Docking score ≥-3.0 kcal/mol) might serve as potential lead molecules in antiviral drug development. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. Thus, MOF might be used as a valuable source for antiviral drug development to combat COVID-19, an ongoing pandemic.


Subject(s)
Antiviral Agents , Moringa oleifera , Plant Extracts , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Esters/pharmacology , Fatty Acids/pharmacology , Fruit/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Moringa oleifera/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/pharmacology , COVID-19 Drug Treatment
7.
J Biomol Struct Dyn ; 40(4): 1858-1908, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33246398

ABSTRACT

Coronaviruses are etiological agents of extreme human and animal infection resulting in abnormalities primarily in the respiratory tract. Presently, there is no defined COVID-19 intervention and clinical trials of prospective therapeutic agents are still in the nascent stage. Withania somnifera (L.) Dunal (WS), is an important medicinal plant in Ayurveda. The present study aimed to evaluate the antiviral potential of selected WS phytoconstituents against the novel SARS-CoV-2 target proteins and human ACE2 receptor using in silico methods. Most of the phytoconstituents displayed good absorption and transport kinetics and were also found to display no associated mutagenic or adverse effect(s). Molecular docking analyses revealed that most of the WS phytoconstituents exhibited potent binding to human ACE2 receptor, SAR-CoV and SARS-CoV-2 spike glycoproteins as well as the two main SARS-CoV-2 proteases. Most of the phytoconstituents were predicted to undergo Phase-I metabolism prior to excretion. All phytoconstituents had favorable bioactivity scores with respect to various receptor proteins and target enzymes. SAR analysis revealed that the number of oxygen atoms in the withanolide backbone and structural rearrangements were crucial for effective binding. Molecular simulation analyses of SARS-CoV-2 spike protein and papain-like protease with Withanolides A and B, respectively, displayed a stability profile at 300 K and constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In a nutshell, WS phytoconstituents warrant further investigations in vitro and in vivo to unravel their molecular mechanism(s) and modes of action for their future development as novel antiviral agents against COVID-19.


Subject(s)
COVID-19 , Withania , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Withania/chemistry
8.
J Biomol Struct Dyn ; 40(9): 3928-3948, 2022 06.
Article in English | MEDLINE | ID: mdl-33289456

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel etiological agent of coronavirus disease 2019 (COVID-19). Nigella sativa, commonly known as black seed or black cumin, has been a historical and traditional plant since thousands of years. Based on their therapeutic efficacy, the chief components of terpenoids and flavonoids were selected from N. sativa seeds and seed oil. This study was designed to check the antiviral efficacy of N. sativa main phytoconstituents against five potential targets of SARS-CoV-2 using in silico structure-based virtual screening approach. Out of twenty five phytocomponents, ten components showed best binding affinity against two viral proteins viz. N-terminal RNA binding domain (NRBD; PDB ID: 6M3M) of nucleocapsid protein and papain-like protease (PL-PRO; PDB ID: 6W9C) of SARS-CoV-2 using AutoDock 4.2.6, AutoDock Vina and iGEMDOCK. PASS analyses of all ten phytocomponents using Lipinski's Rule of five showed promising results. Further, druglikeness and toxicity assessment using OSIRIS Data Warrior v5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. Molecular dynamics simulation study of NRBD of SARS-CoV-2 nucleocapsid protein-alpha-spinasterol complex and PL-PRO-cycloeucalenol complex displayed strong stability at 300 K. Both these complexes exhibited constant root mean square deviation (RMSDs) of protein side chains and Cα atoms throughout the simulation run time. Interestingly, PL-PRO and NRBD are key proteins in viral replication, host cell immune evasion and viral assembly. Thus, NRBD and PL-PRO have the potential to serve as therapeutic targets for N. sativa phytoconstituents in drug discovery process against COVID-19.


Subject(s)
Antiviral Agents , Coronavirus Nucleocapsid Proteins , Coronavirus Papain-Like Proteases , Nigella sativa , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Nigella sativa/chemistry , Phosphoproteins/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
9.
J Biomol Struct Dyn ; 40(12): 5515-5546, 2022 08.
Article in English | MEDLINE | ID: mdl-33526003

ABSTRACT

A sudden outbreak of a novel coronavirus SARS-CoV-2 in 2019 has now emerged as a pandemic threatening to efface the existence of mankind. In absence of any valid and appropriate vaccines to combat this newly evolved agent, there is need of novel resource molecules for treatment and prophylaxis. To this effect, flavonol morin which is found in fruits, vegetables and various medicinal herbs has been evaluated for its antiviral potential in the present study. PASS analysis of morin versus reference antiviral drugs baricitinib, remdesivir and hydroxychloroquine revealed that morin displayed no violations of Lipinski's rule of five and other druglikeness filters. Morin also displayed no tumorigenic, reproductive or irritant effects and exhibited good absorption and permeation through GI (clogP <5). In principal component analysis, morin appeared closest to baricitinib in 3D space. Morin displayed potent binding to spike glycoprotein, main protease 3CLPro and papain-like protease PLPro of SARS-CoV-2, SARS-CoV and MERS-CoV using molecular docking and significant binding to three viral-specific host proteins viz. human ACE2, importin-α and poly (ADP-ribose) polymerase (PARP)-1, further lending support to its antiviral efficacy. Additionally, morin displayed potent binding to pro-inflammatory cytokines IL-6, 8 and 10 also supporting its anti-inflammatory activity. MD simulation of morin with SARS-CoV-2 3CLPro and PLPro displayed strong stability at 300 K. Both complexes exhibited constant RMSDs of protein side chains and Cα atoms throughout the simulation run time. In conclusion, morin might hold considerable therapeutic potential for the treatment and management of not only COVID-19, but also SARS and MERS if studied further. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Humans , Angiotensin-Converting Enzyme 2 , Antiviral Agents/chemistry , Flavonoids , Flavonols , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Docking Simulation , Poly(ADP-ribose) Polymerase Inhibitors , SARS-CoV-2 , Viral Proteins/chemistry
10.
J Biomol Struct Dyn ; 40(20): 9648-9700, 2022.
Article in English | MEDLINE | ID: mdl-34243689

ABSTRACT

There is currently a dearth of specific therapies to treat respiratory infections caused by the three related species of coronaviruses viz. SARS-CoV-2, SARS-CoV and MERS-CoV. Prevention from disease is currently the safest and most convenient alternative available. The present study aimed to evaluate the preventive and therapeutic effect of fifteen phytoconstituents from medicinal plants of Ayurveda against coronaviruses by in silico screening. All the phytoconstituents exhibited rapid GI absorption and bioavailability and most of them had no toxicity versus reference drug chloroquine. BAS analyses revealed that most of the phytocomponents had favorable bioactivity scores towards biological target proteins. Principal component analysis revealed that most of the phytoconstituents fell close to chloroquine in 3D projection of chemical space. Affinity of phytoconstituents towards SARS-CoV-2 spike protein-human ACE2 complex decreased as isomeldenin > tinosporaside > EGCG whereas in case of unbound ACE2, the strength of binding followed the order isomeldenin > tinosporaside > ellagic acid. Towards SARS-CoV-2 main and papain-like proteases, the affinity decreased as isomeldenin > EGCG > tinosporaside and EGCG > tinosporaside > isomeldenin, respectively. Most phytoconstituents displayed significant binding kinetics to the selected protein targets than chloroquine. SAR analysis revealed that isomeldenin, tinosporaside, EGCG and ellagic acid bind to viral spike glycoproteins via H-bond, Pi-Pi, Pi-sigma and Pi-alkyl type interactions. Molecular dynamics simulation of isomeldenin and EGCG with SARS-CoV and SARS-CoV-2 spike glycoproteins exhibited low deviations throughout the 100 ns simulation indicating good stability and compactness of the protein-ligand complexes. Thus, the above four phytoconstituents have the potential to emerge as prophylactic and therapeutic agents against coronaviruses if investigated further in vitro and in vivo.


Subject(s)
Antiviral Agents , Medicine, Ayurvedic , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , Chloroquine/metabolism , COVID-19 , Ellagic Acid/metabolism , Glycoproteins/metabolism , Immunomodulating Agents , Molecular Docking Simulation , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects
11.
Sci Rep ; 11(1): 10322, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990623

ABSTRACT

Ajwa dates (Phoenix dactylifera L.) have been described in traditional and alternative medicine to provide several health benefits, but their mechanism of apoptosis induction against human triple-negative breast cancer MDA-MB-231 cells remains to be investigated. In this study, we analyzed the phytoconstituents in ethanolic Ajwa Dates Pulp Extract (ADPE) by liquid chromatography-mass spectrometry (LC-MS) and investigated anticancer effects against MDA-MB-231 cells. LC-MS analysis revealed that ADPE contained phytocomponents belonging to classes such as carbohydrates, phenolics, flavonoids and terpenoids. MTT assay demonstrated statistically significant dose- and time-dependent inhibition of MDA-MB-231 cells with IC50 values of 17.45 and 16.67 mg/mL at 24 and 48 h, respectively. Hoechst 33342 dye and DNA fragmentation data showed apoptotic cell death while AO/PI and Annexin V-FITC data revealed cells in late apoptosis at higher doses of ADPE. More importantly, ADPE prompted reactive oxygen species (ROS) induced alterations in mitochondrial membrane potential (MMP) in ADPE treated MDA-MB-231 cells. Cell cycle analysis demonstrated that ADPE induced cell arrest in S and G2/M checkpoints. ADPE upregulated the p53, Bax and cleaved caspase-3, thereby leading to the downregulation of Bcl-2 and AKT/mTOR pathway. ADPE did not show any significant toxicity on normal human peripheral blood mononuclear cells which suggests its safe application to biological systems under study. Thus, ADPE has the potential to be used as an adjunct to the mainline of treatment against breast cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Phoeniceae/chemistry , Plant Extracts/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Down-Regulation/drug effects , Drug Screening Assays, Antitumor , Female , Fruit/chemistry , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
12.
J Food Biochem ; 45(5): e13720, 2021 05.
Article in English | MEDLINE | ID: mdl-33856706

ABSTRACT

Moringa oleifera is an excellent source of phenolics and flavonoids comprise various pharmacological activities. The fourth widespread leading cause of the patients' death is liver cancer. This study was formulated to perform the antiproliferative activity of Moringa oleifera fruit (MOF) extract on human liver cancer HepG2 cells and computational validation of cell death. HepG2 cell line was treated with 25, 50, 75, 100, and 200 µg/ml of MOF extract for 48 hr, and antiproliferative activity was analyzed using MTT assay, nuclear condensation, annexin V-FITC/PI double stain, ROS generation, and apoptosis executioner enzyme caspase-3. MOF extract reduced the cell viability significantly (p Ë‚ .05) by increasing cellular apoptosis which was confirmed by annexin V-FITC/PI staining assay. In addition, MOF stimulated intracellular ROS production and subsequently induced caspase-3 activity depending upon dose. In silico analysis revealed the good binding interaction between amino acid residues of caspase-3 (PDB ID: 1GFW) protein and selected active constituents of MOF. PASS analyses of the phytoconstituents showed no violation of Lipinski's rule of five. Analysis of drug-likeness and toxicity measurement exhibited drug-like candidates with no predicted toxicity. In conclusion, this study showed the potential anticancer activity of MOF extract which may be valuable source for anticancer drug development. PRACTICAL APPLICATIONS: Moringa oleifera fruit extract induced the anti-proliferative activity against human hepatocellular carcinoma HepG2 cells through ROS-mediated apoptosis and activation of caspase-3 enzyme. Structure-based virtual screening study between bioactive components of Moringa oleifera fruits and apoptosis executioner caspase-3 enzyme has validated the anti-proliferative activity of Moringa oleifera fruit extract. Interestingly, active phytoconstituents of Moringa oleifera fruit exhibited drug-like candidates with no predicted toxicity. Thus, Moringa oleifera fruit could be used as valuable source for anticancer drug development against human liver cancer with relatively non-toxic to healthy cells.


Subject(s)
Liver Neoplasms , Moringa oleifera , Caspase 3 , Fruit , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Leaves
13.
J Ethnopharmacol ; 274: 114028, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33775807

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA), a degenerative joint disease, is characterized by cartilage erosion and matrix degradation. Solanum xanthocarpum Schrad. & Wendl. fruits (SXF) and leaves have long been used as folk remedy in the treatment of pain in rheumatism. AIM OF THE STUDY: This study was aimed to investigate the phytochemical components and protective benefits of SXF on in vitro chondrocytes proliferation, and in vivo suppression of collagenase-induced OA. MATERIALS AND METHODS: Phytochemical components in ethanolic SXF extract were evaluated using gas chromatography-mass spectrometry (GC-MS). Effect of SXF on in vitro cell proliferation of primary chondrocytes was determined by cell proliferation assay and cell cycle analysis by flow cytometry. OA was induced in the right knees of rats through intra-articular injection of collagenase type-II. To evaluate in vivo preventive function of SXF, body weight, blood ALP, histopathological changes in the knee joint, proteoglycan, and collagen content were determined. The mRNA expression of COL-2, MMP-3 and COX-2 genes through qRT-PCR was studied. Antioxidant activities, total phenolics and flavonoid contents of SXF were also examined. RESULTS: GC-MS analysis revealed that SXF constitutes 28 phytochemicals including flavonoids (3-methoxy apigenin, quercetin, luteolin), tannin (quinic acid), terpenes (oleanolic acid, lupeol, psi.psi carotene), phytosterols (campesterol, stigmasterol, ß-sitosterol), and ascorbic acid. In vitro studies demonstrated that SXF enhanced the cell proliferation in a dose-dependent manner and has no cytotoxic effect on primary chondrocytes. In vivo study suggests that SXF protects the cartilage destruction induced by collagenase. The histological study revealed that SXF restored the synthesis of collagen and proteoglycan, vital factors for cartilage restoration, and reduced the arthritic score. An up-regulation in COL-2 expression and suppression of MMP-3 and COX-2 were detected by qRT-PCR analysis. Thus, in vivo study suggests the protective effects of SXF on cartilage destruction induced by collagenase. CONCLUSIONS: Our results imply that SXF benefits and ameliorates OA by enhancing the chondrocytes proliferation and preventing the articular cartilage damage through the restoration of their structural molecules, arthritic score reduction, suppression of MMP-3 and COX-2 expression level and up regulation of COL-2 genes expression. These results suggest that SXF could be a promising alternative treatment candidate for osteoarthritis.


Subject(s)
Cartilage, Articular/drug effects , Chondrocytes/drug effects , Osteoarthritis/drug therapy , Plant Extracts/pharmacology , Protective Agents/pharmacology , Solanum/chemistry , Administration, Oral , Alkaline Phosphatase/blood , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Body Weight/drug effects , Cartilage, Articular/injuries , Cell Proliferation/drug effects , Collagen Type II/metabolism , Collagenases/toxicity , Cyclooxygenase 2/metabolism , Disease Models, Animal , Flavonoids/analysis , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/pharmacology , Fruit/chemistry , Indomethacin/pharmacology , Matrix Metalloproteinase 3/metabolism , Osteoarthritis/chemically induced , Phenols/analysis , Plant Extracts/administration & dosage , Primary Cell Culture , Protective Agents/administration & dosage , Proteoglycans/metabolism , Rats, Sprague-Dawley
14.
Anticancer Agents Med Chem ; 21(18): 2536-2545, 2021.
Article in English | MEDLINE | ID: mdl-33568037

ABSTRACT

BACKGROUND: Cervical cancer is the second leading cause of cancer in women, which necessitates safe and potential therapeutic agents. OBJECTIVE: This study was designed to investigate the antiproliferative effect of ethanolic extract of Cissus quadrangularis L. (CQ) against human cervical adenocarcinoma HeLa cell line and in silico analysis of selected active agents against apoptosis executioner enzyme caspase-3. METHODS: Cell viability was analyzed in HeLa cells at different concentrations (25-300 µg/ml) of CQ extract. Reactive oxygen species (ROS) generation, cellular apoptosis, cell cycle analysis and caspases-3 activation were evaluated. In silico, structure-based virtual screening analysis was carried out using AutoDock Vina and iGEMDOCK. RESULTS: Cell viability of HeLa cells was reduced significantly (p < 0.05) in a dose-dependent manner, however, CQ extract showed non-toxic to normal kidney epithelial NRK-52E cells. CQ extract induced the intracellular ROS level, nuclear condensation and reduced the mitochondrial membrane potential (MMP) with the induction of annexin V-FITC positive cells. CQ extract arrested cells in G0/G1 and G2/M checkpoints and activated caspase-3 activity significantly in HeLa cells. The molecular docking study showed a strong binding affinity of CQ phytocomponents against the caspase-3 (PDB ID: 1GFW) protein of human apoptosis. PASS analyses of selected active components using Lipinski's Rule of five showed promising results. Further, drug-likeness and toxicity assessment using OSIRIS Data Warrior V5.2.1 software exhibited the feasibility of phytocomponents as drug candidates with no predicted toxicity. CONCLUSION: This study suggested that active constituents in CQ extract can be considered as potential chemotherapeutic candidates in the management of cervical cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cissus/chemistry , Molecular Docking Simulation , Plant Extracts/pharmacology , Uterine Cervical Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , HeLa Cells , Humans , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Tumor Cells, Cultured , Uterine Cervical Neoplasms/pathology
15.
Sci Rep ; 9(1): 245, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664656

ABSTRACT

Ajwa dates (Phoenix dactylifera L.) are used by traditional therapeutic practitioners for several health benefits but most remain to be scientifically validated. In this study, we evaluated the apoptosis-inducing effect of ethanolic extract of Ajwa date pulp (ADP) on human hepatocellular carcinoma (HCC) HepG2 cells. High performance liquid chromatography analysis revealed the presence of polysaccharide ß-D-glucan in ADP extract. Treated HCC cells revealed morphological characteristics of apoptosis under phase contrast microscopy. MTT assay demonstrated significant (p < 0.05) dose- and time-dependent inhibition of HCC cell growth. HCC cells were found to be in late apoptotic stage on treatment with higher doses of ADP extract as depicted by acridine orange/ethidium bromide and Annexin V-FITC/PI double stain. Importantly, ADP extract increased the reactive oxygen species level and decreased the mitochondrial membrane potential in treated HCC cells. Flow cytometry analysis demonstrated that ADP extract induced elevation of S and G2/M phases of cell cycle. Moreover, ADP extract induced apoptosis in HCC cells independent of tumor suppressor genes viz. CHEK2, ATM and TP53. Interestingly, ADP extract did not display any significant effect on normal cell line Vero. This study provides validation that ADP extract can be considered as a safe and natural potential drug candidate against human liver cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cytostatic Agents/pharmacology , Liver Neoplasms/diet therapy , Plant Extracts/pharmacology , beta-Glucans/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Chlorocebus aethiops , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Phoeniceae/metabolism , Proteoglycans , Reactive Oxygen Species/metabolism , Vero Cells
16.
Nat Prod Res ; 33(18): 2699-2703, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29629826

ABSTRACT

HPLC validated hexane bark extract of Onosma echioides L. root (OE) was evaluated for cure of human diabetic neuropathy in human neuroblastoma cell line. HPLC analysis was performed. Human neuroblastoma cells were grouped into control, normal glucose, high glucose (HG) and HG plus different concentrations of OE extract (10, 25 and 50 µg/mL). MTT, DCFH-DA staining and nuclear condensation assays were performed on neuroblastoma cells to evaluate antiproliferative activity, ROS activity level and apoptotic effect of OE. HPLC analysis revealed the existence of maximum yield of shikonin in n-hexane extract of OE. Exposure with different concentrations of OE effectively decreased ROS level and apoptosis of cells and as a result improved the viability of cells in a dose dependent manner in response to HG-induced oxidative stress. Thus, OE possesses the property to cure human diabetic neuropathy and further can be clinically tested for its use in diabetic neuropathy.


Subject(s)
Boraginaceae/chemistry , Chromatography, High Pressure Liquid/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Diabetic Neuropathies/drug therapy , Dose-Response Relationship, Drug , Humans , Naphthoquinones/analysis , Neuroblastoma/drug therapy , Plant Extracts/administration & dosage , Plant Roots/chemistry , Plants, Medicinal/chemistry , Reactive Oxygen Species/metabolism , Reproducibility of Results
17.
Front Biosci (Elite Ed) ; 9(1): 67-75, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27814590

ABSTRACT

Ovarian cancer ranks 5th among the most common gynecologic cancers and causes the highest mortality in females. Here, we discuss the role of a group of natural products that are being used in treatment and prevention of a host of cancers including ovarian cancer. Some plants and nutraceuticals and their polyphenolic constituents such as flavones, flavonoids, and antioxidants have shown cytotoxic effects on cancer cells both in vitro and in vivo. While phytochemicals do not harm normal cells, they have been found to be cytotoxic to cancer cells by virtue of inhibition of proliferation and/or induction of apoptosis, making them ideal in cancer therapeutics or as adjunct to conventional treatment regimens.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Ovarian Neoplasms/drug therapy , Phytochemicals/therapeutic use , Female , Humans , Lipids/chemistry , Lipids/therapeutic use , Phenols/chemistry , Phenols/therapeutic use , Phytochemicals/classification , Sulfur Compounds/chemistry , Sulfur Compounds/therapeutic use , Terpenes/chemistry , Terpenes/therapeutic use
18.
Daru ; 22: 72, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409708

ABSTRACT

BACKGROUND: Osteoporosis is one of the prevalent diseases in ageing populations. Due to side effects of many chemotherapeutic agents, there is always a need to search for herbal products to treat the disorder. Punica granatum (PG) represent a potent fruit-bearing medicinal herb which exerted valuable anti-osteoporotic activities. The present study was carried out to validate the in vitro osteogenic effects of the PG seed extract in primary calvarial osteoblast cultures harvested from neonatal rats. METHODS: The ethanolic extract of PG was subjected to evaluate cell proliferation, regeneration, mineralization and formation of collagen matrix using MTT, alkaline phosphatase, Alizarin Red-S staining and Sirius Red dye, respectively. Cell cycle progression and osteogenic gene Runx2 expression were carried out by flow cytometry and real time PCR, respectively. RESULTS: Exposure of different concentrations (10-100 µg/ml) of the extract on osteoblastic cells showed characteristic morphological changes and increment in cell number. A significant growth in cell proliferation, ALP activity, collagen contents and matrix mineralization of osteoblasts in a dose dependent manner (p < 0.05), suggested that PG has a stimulatory effect on osteoblastic bone formation or potential activity against osteoporosis. In addition, PG extract also enhanced DNA content in S phase of cell cycle and Runx2 gene expression level in osteoblasts. CONCLUSION: The data clearly indicated that PG promoting bone cell proliferation and differentiation in primary osteoblasts might be due to elevating the osteogenic gene Runx2 expression. The present study provides an evidence for PG could be a promising herbal medicinal candidate that able to develop drugs for osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Calcification, Physiologic/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Lythraceae , Osteoblasts/drug effects , Osteogenesis/drug effects , Plant Extracts/pharmacology , S Phase/drug effects , Alkaline Phosphatase/metabolism , Animals , Animals, Newborn , Cell Proliferation/drug effects , Cells, Cultured , Collagen/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , DNA Replication/drug effects , Dose-Response Relationship, Drug , Osteoblasts/metabolism , Phytotherapy , Plants, Medicinal , Primary Cell Culture , Rats , Seeds , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL