Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JAMA Netw Open ; 5(5): e2213875, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35616942

ABSTRACT

Importance: Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective: To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants: This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions: One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures: Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results: A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance: In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration: ClinicalTrials.gov Identifier: NCT03094546.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Aged , Animals , Biomarkers , Cognition/physiology , Cognitive Dysfunction/drug therapy , Dietary Supplements , Female , Humans , Inflammation , Spermidine/pharmacology , Spermidine/therapeutic use
2.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34517941

ABSTRACT

Microsatellite expansions of CCTG repeats in the cellular nucleic acid-binding protein (CNBP) gene leads to accumulation of toxic RNA and have been associated with myotonic dystrophy type 2 (DM2). However, it is still unclear whether the dystrophic phenotype is also linked to CNBP decrease, a conserved CCHC-type zinc finger RNA-binding protein that regulates translation and is required for mammalian development. Here, we show that depletion of Drosophila CNBP in muscles causes ageing-dependent locomotor defects that are correlated with impaired polyamine metabolism. We demonstrate that the levels of ornithine decarboxylase (ODC) and polyamines are significantly reduced upon dCNBP depletion. Of note, we show a reduction of the CNBP-polyamine axis in muscles from DM2 patients. Mechanistically, we provide evidence that dCNBP controls polyamine metabolism through binding dOdc mRNA and regulating its translation. Remarkably, the locomotor defect of dCNBP-deficient flies is rescued by either polyamine supplementation or dOdc1 overexpression. We suggest that this dCNBP function is evolutionarily conserved in vertebrates with relevant implications for CNBP-related pathophysiological conditions.


Subject(s)
Drosophila Proteins/metabolism , Motor Activity/genetics , Motor Activity/physiology , Polyamines/metabolism , RNA-Binding Proteins/metabolism , Animals , Animals, Genetically Modified , Cell Line , Down-Regulation/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Muscle, Skeletal/metabolism , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Protein Biosynthesis , Putrescine/pharmacology , RNA Interference , RNA-Binding Proteins/genetics , Spermidine/pharmacology
3.
Cell Rep ; 35(2): 108985, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852843

ABSTRACT

Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.


Subject(s)
Aging/genetics , Autophagy-Related Protein 7/genetics , Cognitive Dysfunction/genetics , Dietary Supplements , Protein Kinases/genetics , Spermidine/pharmacology , Ubiquitin-Protein Ligases/genetics , Aging/metabolism , Animals , Autophagy-Related Protein 7/metabolism , Brain/cytology , Brain/drug effects , Brain/growth & development , Brain/metabolism , Cognition/drug effects , Cognition/physiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Female , Gene Expression Regulation , Humans , Learning/drug effects , Learning/physiology , Male , Mice , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Oxidative Phosphorylation/drug effects , Protein Kinases/metabolism , Signal Transduction , Spatial Memory/drug effects , Spatial Memory/physiology , Ubiquitin-Protein Ligases/metabolism
4.
Cell Rep ; 35(2): 108941, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33852845

ABSTRACT

Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Lysine/analogs & derivatives , Mitochondria/metabolism , Peptide Initiation Factors/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/metabolism , Spermidine/pharmacology , Administration, Oral , Aging, Premature/genetics , Aging, Premature/metabolism , Animals , Brain/metabolism , Brain/pathology , Cell Respiration/genetics , Drosophila Proteins/classification , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Locomotion/physiology , Lysine/metabolism , Memory/physiology , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Models, Animal , Neurons/metabolism , Neurons/pathology , Peptide Initiation Factors/genetics , RNA-Binding Proteins/genetics , Spermidine/metabolism , Eukaryotic Translation Initiation Factor 5A
5.
Geroscience ; 43(2): 673-690, 2021 04.
Article in English | MEDLINE | ID: mdl-33517527

ABSTRACT

Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.


Subject(s)
Spermidine , Telomere , Aging , Animals , Autophagy , Dietary Supplements , Mice , Spermidine/pharmacology
6.
Alzheimers Res Ther ; 11(1): 36, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31039826

ABSTRACT

BACKGROUND: Given the global increase in the aging population and age-related diseases, the promotion of healthy aging is one of the most crucial public health issues. This trial aims to contribute to the establishment of effective approaches to promote cognitive and brain health in older individuals with subjective cognitive decline (SCD). Presence of SCD is known to increase the risk of objective cognitive decline and progression to dementia due to Alzheimer's disease. Therefore, it is our primary goal to determine whether spermidine supplementation has a positive impact on memory performance in this at-risk group, as compared with placebo. The secondary goal is to examine the effects of spermidine intake on other neuropsychological, behavioral, and physiological parameters. METHODS: The SmartAge trial is a monocentric, randomized, double-blind, placebo-controlled phase IIb trial. The study will investigate 12 months of intervention with spermidine-based nutritional supplementation (target intervention) compared with 12 months of placebo intake (control intervention). We plan to recruit 100 cognitively normal older individuals with SCD from memory clinics, neurologists and general practitioners in private practice, and the general population. Participants will be allocated to one of the two study arms using blockwise randomization stratified by age and sex with a 1:1 allocation ratio. The primary outcome is the change in memory performance between baseline and post-intervention visits (12 months after baseline). Secondary outcomes include the change in memory performance from baseline to follow-up assessment (18 months after baseline), as well as changes in neurocognitive, behavioral, and physiological parameters (including blood and neuroimaging biomarkers), assessed at baseline and post-intervention. DISCUSSION: The SmartAge trial aims to provide evidence of the impact of spermidine supplementation on memory performance in older individuals with SCD. In addition, we will identify possible neurophysiological mechanisms of action underlying the anticipated cognitive benefits. Overall, this trial will contribute to the establishment of nutrition intervention in the prevention of Alzheimer's disease. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03094546 . Registered 29 March 2017-retrospectively registered. PROTOCOL VERSION: Based on EA1/250/16 version 1.5.


Subject(s)
Cognition/drug effects , Cognitive Dysfunction/prevention & control , Spermidine/administration & dosage , Biomarkers/blood , Brain/drug effects , Brain/physiopathology , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnostic imaging , Dietary Supplements , Double-Blind Method , Female , Humans , Male , Research Design
7.
Nat Commun ; 10(1): 651, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783116

ABSTRACT

Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.


Subject(s)
Aging/drug effects , Autophagy/drug effects , Flavonoids/pharmacology , Longevity/drug effects , Aging/physiology , Angelica/chemistry , Animals , Caenorhabditis elegans/drug effects , Cation Transport Proteins/genetics , Cell Death/drug effects , Cell Line/drug effects , Drosophila melanogaster/drug effects , Flavonoids/administration & dosage , GATA Transcription Factors/drug effects , Gene Expression Regulation/drug effects , Humans , Longevity/physiology , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Medicine, East Asian Traditional , Mice , Mice, Inbred C57BL , Myocardial Ischemia/drug therapy , Plant Extracts/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Sirolimus/pharmacology , Transcription Factors/drug effects , Transcription Factors/genetics
8.
Cortex ; 109: 181-188, 2018 12.
Article in English | MEDLINE | ID: mdl-30388439

ABSTRACT

INTRODUCTION: Nutritional intervention with the natural polyamine spermidine, an autophagy-enhancing agent, can prevent memory loss in aging model organisms. This is the first human study to evaluate the impact of spermidine supplementation on memory performance in older adults at risk for the development of Alzheimer's disease. METHODS: Cognitively intact participants with subjective cognitive decline (n = 30, 60-80 years of age) were included in this three-months, randomized, placebo-controlled, double-blind Phase IIa pilot trial with a spermidine-rich plant extract supplement. Effects of intervention were assessed using the behavioral mnemonic similarity task, measured at baseline and post-intervention visits. Data analysis was focused on reporting and interpreting effectiveness based on effect sizes. RESULTS: Memory performance was moderately enhanced in the spermidine group compared with placebo at the end of intervention [contrast mean = .17, 95% confidence interval (CI): -.01, .35, Cohen's d = .77, 95% CI: 0, 1.53]. Mnemonic discrimination ability improved in the spermidine-treated group with a medium effect size (mean difference = -.11, 95% CI: -.19, -.03, Cohen's d = .79, 95% CI: .01, 1.55). A similar effect was not found in the placebo-treated group (mean difference = .07, 95% CI: -.13, .27, Cohen's d = -.20, 95% CI: -.94, .54). DISCUSSION: In this pilot trial, nutritional spermidine was associated with a positive impact on memory performance in older adults with subject cognitive decline. The beneficial effect might be mediated by stimulation of neuromodulatory actions in the memory system. A follow-up Phase IIb randomized controlled trial will help validate the therapeutic potential of spermidine supplementation and delineate possible neurophysiological mechanisms of action. TRIAL REGISTRATION: Registered in ClinicalTrials.gov with the Identifier NCT02755246.


Subject(s)
Cognitive Dysfunction/psychology , Dementia/psychology , Dietary Supplements , Memory/drug effects , Spermidine/pharmacology , Aged , Aged, 80 and over , Double-Blind Method , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Risk Factors
9.
Aging (Albany NY) ; 10(1): 19-33, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29315079

ABSTRACT

Supplementation of spermidine, an autophagy-inducing agent, has been shown to protect against neurodegeneration and cognitive decline in aged animal models. The present translational study aimed to determine safety and tolerability of a wheat germ extract containing enhanced spermidine concentrations. In a preclinical toxicity study, supplementation of spermidine using this extract did not result in morbidities or changes in behavior in BALBc/Rj mice during the 28-days repeated-dose tolerance study. Post mortem examination of the mice organs showed no increase in tumorigenic and fibrotic events. In the human cohort (participants with subjective cognitive decline, n=30, 60 to 80 years of age), a 3-month randomized, placebo-controlled, double-blind Phase II trial was conducted with supplementation of the spermidine-rich plant extract (dosage: 1.2 mg/day). No differences were observed between spermidine and placebo-treated groups in vital signs, weight, clinical chemistry and hematological parameters of safety, as well as in self-reported health status at the end of intervention. Compliance rates above 85% indicated excellent tolerability. The data demonstrate that spermidine supplementation using a spermidine-rich plant extract is safe and well-tolerated in mice and older adults. These findings allow for longer-term intervention studies in humans to investigate the impact of spermidine treatment on cognition and brain integrity.


Subject(s)
Cognition/drug effects , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Spermidine/pharmacology , Administration, Oral , Aged , Aged, 80 and over , Aging , Animals , Cognitive Dysfunction/drug therapy , Double-Blind Method , Female , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Plant Extracts/adverse effects , Spermidine/administration & dosage , Spermidine/adverse effects
10.
Sci Signal ; 2(70): pe32, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19436057

ABSTRACT

Mechanisms of synapse assembly are relevant for our understanding of neuronal development, as well as the processes of learning and memory. The presynaptic active zone membrane is covered by a protein-rich matrix, which is thought to be important for fast vesicle fusion, as well as potentially contributing to synapse stability. By genetic analysis, matrix proteins of active zones from various families have been shown to promote synapse assembly. New evidence shows that the evolutionarily conserved protein RSY-1 (regulator of synaptogenesis 1) locally inhibits active zone assembly to restrict synapse formation to the correct positions during Caenorhabditis elegans development. Thus, the protein interactions that assemble the architecture of the active zone appear to locally integrate not only positive but also negative signals.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Presynaptic Terminals/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/physiology , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins , Models, Biological , Motor Neurons/metabolism , Neurogenesis/genetics , Neurogenesis/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/physiology , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL