Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Planta Med ; 71(7): 592-8, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16041642

ABSTRACT

The two herbal extracts valerian (Valeriana officinalis L.) and St. John's wort (Hypericum perforatum L.) were studied for their metabolic changes upon incubation with freshly prepared rat hepatocytes and subsequently analysed phytochemically as well as pharmacologically in vitro. Quantitative HPLC analysis of valerian extracts revealed considerable metabolic activities with regard to sesquiterpenes and iridoids. The amount of acetoxyvalerenic acid decreased 9-fold, while that of hydroxyvalerenic acid correspondingly increased 9-fold due to O-deacetylation. The valepotriates didrovaltrate, isovaltrate and valtrate decreased 2-, 18- and 16-fold, respectively. However, the binding affinities of the incubated extracts to the benzodiazepine and picrotoxin binding site of the GABA (A) receptor were quite similar to those of the non-incubated extracts. Neither valerenic acids nor valepotriates exhibited any significant effect on the two binding sites when tested as single compounds. Therefore, either other constituents represent the active ones or multiple compounds are necessary for the observed inhibitory and allosteric effects at the GABA (A) receptor. Extracts of St. John's wort were less potently metabolised than valerian. The amount of pseudohypericin and the main flavonoids (hyperoside, rutin, isoquercitrin, quercitrin, quercetin and I3,II8-biapigenin) slightly decreased during the 4-h incubation period. Both the antagonist effect at the corticotropin-releasing factor (CRF) type 1 receptor and the binding inhibition at the 5-HT transporter were attenuated during the metabolic treatment. The reduced antagonist effect correlates with the decreasing amount of pseudohypericin known to be a CRF (1) receptor antagonist. In conclusion, the incubation of plant extracts with freshly prepared rat hepatocytes represents a useful approach to study the pharmacological action of metabolised plant extracts. The consistent pharmacological activity of both valerian and St. John's wort is concordant with the known clinical efficacy of pharmacological activities.


Subject(s)
Antidepressive Agents/pharmacology , Hepatocytes/drug effects , Hypericum , Hypnotics and Sedatives/pharmacology , Phytotherapy , Plant Extracts/pharmacology , Valerian , Animals , Chromatography, High Pressure Liquid , Flowers , Hepatocytes/metabolism , Male , Plant Extracts/administration & dosage , Plant Extracts/therapeutic use , Plant Leaves , Plant Roots , Rats , Rats, Sprague-Dawley
2.
Mol Pharmacol ; 68(3): 787-92, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15939801

ABSTRACT

GABAA receptors are modulated by a large variety of compounds. A common chemical characteristic of most of these modulators is that they contain a cyclic entity. Three linear molecules of a polyacetylene structure were isolated from the East African medicinal plant Cussonia zimmermannii Harms and shown to allosterically stimulate GABAA receptors. Stimulation was not abolished by the absence of the gamma2 subunit, the benzodiazepine antagonist Ro15-1788 (8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester), or the point mutation beta2N265S that abolishes effects by loreclezole. At a concentration of 30 microM, the substances by themselves elicited only tiny currents. Maximal stimulation at alpha1beta2gamma2 amounted to 110 to 450% for the three substances, and half-maximal stimulation was observed at concentrations of 1 to 2 muM. Stimulation was subunit composition-dependent and was for the substance MS-1, alpha1beta2gamma2 approximately alpha1beta2 approximately alpha3beta2gamma2 > alpha2beta2gamma2 > alpha5beta2gamma2 approximately alpha1beta3gamma2 approximately alpha6beta2gamma2 > alpha1beta1gamma2, for MS-2 alpha1beta2gamma2 approximately alpha3beta2gamma2 approximately alpha1beta2 > alpha2beta2gamma2 approximately alpha6beta2gamma2 approximately alpha5beta2gamma2 > alpha1beta1gamma2, and for MS-4, alpha1beta2gamma2 approximately alpha1beta2 approximately alpha5beta2gamma2 approximately alpha3beta2gamma2 approximately alpha2beta2gamma2 > alpha6beta2gamma2 >> alpha1beta1gamma2. Maximal stimulation by MS-1 was 450% at alpha1beta2gamma2, 80% at alpha1beta1gamma2, and 150% at alpha1beta3gamma2. MS-1 was thus specific for receptors containing the beta2 subunit. The reversal potential was unaffected by 10 microM MS-1, whereas apparent picrotoxin affinity for current inhibition was increased approximately 3-fold. In summary, these positive allosteric modulators of GABAA receptors of plant origin have a novel unusual chemical structure and act at a site independent of that of benzodiazepines and loreclezole.


Subject(s)
Araliaceae/chemistry , GABA Modulators/pharmacology , Plant Extracts/pharmacology , Receptors, GABA-A/drug effects , Allosteric Regulation , Animals , Bicuculline/pharmacology , Flumazenil/pharmacology , Flunitrazepam/metabolism , Picrotoxin/pharmacology , Xenopus laevis
3.
Planta Med ; 70(8): 771-7, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15326551

ABSTRACT

The use of proton NMR spectroscopy allows the analysis of complex multi-component mixtures such as plant extracts by simultaneous quantification of all proton-bearing compounds and consequently all relevant substance classes. Since the spectra obtained are too complicated to be analysed visually, the classification of spectra was carried out using multivariate statistical methods. The spectroscopic data of various extracts of St. John's wort (Hypericum perforatum) samples derived from 4 different accessions extracted with 6 distinct solvents were chemometrically evaluated and calibrated using the partial least square (PLS) algorithm. In a first approach, we found a consistent correlation for the spectroscopic pattern of the extracts and the corresponding IC (50) values derived from non-selective binding to opioid receptors. Consequently, the multivariate data analysis was used to predict the pharmacological efficacy of further St. John's wort extracts on the basis of their proton NMR spectra. In a second approach a PLS 2 model was used to predict the biological activity for eight St. John's wort extracts based on two pharmacological data sets: (i) non-selective binding to opioid receptors and (ii) antagonist effect at corticotrophin-releasing factor type 1 (CRF (1)) receptors. The PLS 2 model confirmed the useful application of the presented approach to assess the quality of medicinal herbs and extracts by spectroscopic analysis derived from bioactivity-related quality parameters.


Subject(s)
Hypericum , Magnetic Resonance Spectroscopy/standards , Phytotherapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Receptors, Opioid/drug effects , Humans , Inhibitory Concentration 50 , Plant Extracts/classification , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL