Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Appl Environ Microbiol ; 84(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30389764

ABSTRACT

Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.


Subject(s)
Antidotes/pharmacology , Antidotes/therapeutic use , Antitoxins/pharmacology , Antitoxins/therapeutic use , Bacterial Toxins/antagonists & inhibitors , Animals , Botulinum Toxins, Type A/antagonists & inhibitors , Cell Line, Tumor/drug effects , Clostridium botulinum , Disease Models, Animal , Endopeptidases , High-Throughput Screening Assays , Humans , India , Inhibitory Concentration 50 , Male , Mice , Neuroblastoma/drug therapy , Plant Extracts/pharmacology , SNARE Proteins/metabolism , Synaptosomal-Associated Protein 25/metabolism , Thermolysin
2.
Biochimie ; 140: 133-145, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28751215

ABSTRACT

The aim of this study is to determine, and to compare the protective effects of eight 4-methylcoumarins and four related compounds as radical scavengers and chain-breaking antioxidants. The main kinetic parameters of their radical scavenging activity (as % RSA, stoichiometry, n, and rate constants of reaction with DPPH radical, kRSA) and of chain breaking antioxidant activity (as antioxidant efficiency, PF and reactivity, ID), have been determined and discussed. The RSA study has been conducted at physiological temperature (37 °Ð¡) towards DPPH radical and the tested compounds are separated into three main groups: with strong activity (% RSA > 40%); with moderate activity (20% < % RSA > 40%) and with weak activity (% RSA < 20%). Chain-breaking antioxidant activities of the studied compounds have been evaluated during bulk phase lipid (triacylglycerols of sunflower oil, TGSO) autoxidation at 80 °C. All results obtained are compared with those for standard and known inhibitors of oxidation processes, e.g. caffeic and p-coumaric acids, α-tocopherol and butylated hydroxytoluene (BHT). On the basis of a comparative analysis with standard antioxidants, the differences in the radical scavenging and antioxidant abilities of the studied compounds have been discussed and reaction mechanisms proposed. All structures are optimized at UB3LYP/6-31 + G(d,p) level in gas phase and in acetone solution to study the solvation effects.


Subject(s)
Coumarins/chemistry , Coumarins/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Plant Oils/chemistry , Sunflower Oil , Triglycerides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL