Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Plants (Basel) ; 12(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631128

ABSTRACT

The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.

2.
Plant Physiol Biochem ; 202: 107927, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37544120

ABSTRACT

Indian pennywort (Centella asiatica L. Urban; Apiaceae) is a herbaceous plant used as traditional medicine in several regions worldwide. An adequate supply of fresh water in accordance with crop requirements is an important tool for maintaining the productivity and quality of medicinal plants. The objective of this study was to find a suitable irrigation schedule for improving the morphological and physiological characteristics, and crop productivity of Indian pennywort using high-throughput phenotyping. Four treatments were considered based on irrigation schedules (100, 75, 50, and 25% of field capacity denoted by I100 [control], I75, I50, and I25, respectively). The number of leaves, plant perimeter, plant volume, and shoot dry weight were sustained in I75 irrigated plants, whereas adverse effects on plant growth parameters were observed when plants were subjected to I25 irrigation for 21 days. Leaf temperature (Tleaf) was also retained in I75 irrigated plants, when compared with control. An increase of 2.0 °C temperature was detected in the Tleaf of plants under I25 irrigation treatment when compared with control. The increase in Tleaf was attributed to a decreased transpiration rate (R2 = 0.93), leading to an elevated crop water stress index. Green reflectance and leaf greenness remained unchanged in plants under I75 irrigation, while significantly decreased under I50 and I25 irrigation. These decreases were attributed to declined leaf osmotic potential, increased non-photochemical quenching, and inhibition of net photosynthetic rate (Pn). The asiatic acid and total centellosides in the leaf tissues, and centellosides yield of plants under I75 irrigation were retained when compared with control, while these parameters were regulated to maximal when exposed to I50 irrigation. Based on the results, I75 irrigation treatment was identified as the optimum irrigation schedule for Indian pennywort in terms of sustained biomass and a stable total centellosides. However, further validation in the field trials at multiple locations and involving different crop rotations is recommended to confirm these findings.


Subject(s)
Centella , Centella/chemistry , Centella/growth & development , Centella/physiology , Agricultural Irrigation , Biomass , Plants, Medicinal/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/physiology , Plant Transpiration , Conservation of Water Resources
3.
Environ Geochem Health ; 45(11): 7637-7649, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37402936

ABSTRACT

Indian camphorweed (Pluchea indica (L.) Less.) is used as herbal tea due to the presence of volatile aromatic oils and several phytochemical compounds. The aim of this study was to assess the impact of copper (Cu) contamination on the physiology and morphology of P. indica, and the health risks associated with its consumption as tea. The cuttings of P. indica were subjected to 0 mM (control), 5 mM (low Cu), and 20 mM (excess Cu) of CuSO4 treatments for 1, 2, and 4 weeks. Thereafter, Cu contamination as well as physiological and morphological parameters were assessed. Cu accumulation was higher in the root tissues of plants (25.8 folds higher as compared to the leaves) grown under 20 mM CuSO4 for 4 weeks. This increased Cu accumulation resulted in the inhibition of root length, root fresh weight, and root dry weight. Cu concentration was found maximum (1.36 µg g-1 DW) in the leaf tissues under 20 mM Cu exposure for 4 weeks, with the highest target hazard quotient (THQ = 1.85), whereas Cu was not detected in control. Under exposure to 20 mM Cu treatment for 4 weeks, leaf greenness, maximum quantum yield of photosystem II, and photon yield of photosystem II diminished by 21.4%, 16.1%, and 22.4%, respectively, as compared to the control. Leaf temperature was increased by 2.5 °C, and the crop stress index (CSI) exceeded 0.6 when exposed to 20 mM Cu treatment for 2 and 4 weeks; however, the control had a CSI below 0.5. This led to a reduced transpiration rate and stomatal conductance. In addition, the net photosynthetic rate was also found sensitive to Cu treatment, which resulted in decreased shoot and root growth. Based on the key results, it can be suggested that P. indica herbal tea derived from the foliage of plants grown under a 5 mM Cu level (0.75 µg g-1 DW) with a target hazard quotient below one aligns with the recommended dietary intake of Cu in leafy vegetables. The study recommends choosing cuttings from plants with a small canopy as plant material in the greenhouse microclimates to validate the growth performance in the Cu-contaminated soil and simulate the natural shrub architecture and life cycle.


Subject(s)
Copper , Teas, Herbal , Copper/toxicity , Copper/chemistry , Photosystem II Protein Complex/metabolism , Photosynthesis , Antioxidants/metabolism , Plant Leaves/metabolism
4.
Protoplasma ; 260(1): 77-87, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35441891

ABSTRACT

Allelopathy has been proposed as an efficient mechanism of invasion by plant species via growth inhibition and suppression of the resident plant community. Verbesina encelioides (Cav.) Benth. & Hook. f. ex A. Gray (golden crownbeard; Asteraceae), a native of south-western USA and Mexican Plateau, is an emerging troublesome invasive weed species of north-western states of India. We investigated the allelopathic potential of the aqueous extracts prepared from the fresh foliage and leaf litter of V. encelioides on its co-occurring species, Amaranthus viridis and Senna occidentalis. Phytotoxicity bioassay showed concentration-dependent (control < 0.5% < 1% < 2% < 4% extract) inhibition of growth and photosynthetic parameters in the test plants. Both the extracts induced ~ 50% inhibition of germination compared to control at 4% concentration. The maximum synthesis effect (collective effect on seedling length and dry weight) was observed to be - 0.69 and - 0.62 in A. viridis and - 0.68 and - 0.57 in S. occidentalis for the fresh leaf and leaf litter extracts, respectively, at 4% concentration. Also, an antagonistic concentration-dependent impact was observed on the photosynthetic pigments (total chlorophyll and chlorophyll a content) and photosynthetic efficiency. The liquid chromatography-mass spectrometry assay of leaf extracts revealed the presence of 15 allelochemicals including phenolic acids, flavonoids, phytosterols, phytophenols, dicarboxylic acid, guanidine, and triterpenes. Of these, 14 compounds were present in both fresh and leaf litter materials. However, a guanidine derivative, galegine, was only found in the fresh leaf material of the plant. The findings support the novel weapon hypothesis and suggest that V. encelioides competitively excludes its neighboring plants by virtue of allelopathic interference.


Subject(s)
Alkaloids , Asteraceae , Verbesina , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chlorophyll A
5.
Biomed Pharmacother ; 146: 112514, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34963087

ABSTRACT

Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aromatherapy/methods , Neoplasms/drug therapy , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antioxidants/pharmacology , Cancer Pain/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Compounding , Drug Resistance, Neoplasm/physiology , Humans , Immune System/drug effects , Mice , Nanoparticle Drug Delivery System , Oils, Volatile/adverse effects , Oils, Volatile/chemistry
6.
Ecotoxicol Environ Saf ; 229: 113080, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34929504

ABSTRACT

Rice (Oryza sativa L.) is a highly consumed staple crop worldwide, but abiotic/heavy metal stresses acting on the plant cause reduction in yield and quality, thereby impacting global food security. In the present study, we examined the effect of ß-pinene against Arsenic (As)-induced oxidative damage vis-à-vis regulation of activities of enzymatic antioxidants in roots of O. sativa. Effect of As (50 µM), ß-pinene (10 µM; ß-10) and As + ß-10 treatments on root length, shoot length, As accumulation, lipid peroxidation (as malondialdehyde [MDA] content), hydrogen peroxide (H2O2) accumulation, and activities of lipoxygenase (LOX) and enzymatic antioxidants such as ascorbate peroxidase (APX), guaiacol peroxidase (GPX), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CAT) was determined. Exposure of As caused a decline in root and shoot length, and enhancement in As accumulation, lipid peroxidation, and activities of enzymatic antioxidants. However, supplementation of ß-10 (i.e., As + ß-10 treatments) led to an increase in root and shoot length. Treatment with As + ß-10 resulted in a decline in As accumulation, H2O2 content, and MDA content; however, the effect on LOX activity was non-significant, as compared to control. Similarly, with As + ß-10 treatment a reduction in the activities of APX, GPX, GR, SOD, and CAT was observed as compared with As-alone treatment. Pearson's correlation matrix exhibited strong negative correlation between reactive oxygen species (ROS) and root/shoot length, whereas a strong positive correlation was observed between antioxidant enzymes and ROS. The present study demonstrated that ß-pinene significantly ameliorates As-induced oxidative stress and provides tolerance to O. sativa against As-induced toxicity, and thus offer an option of As-mitigation using environment friendly natural plant products. However, to gain insights into the function of ß-pinene in modulating As-induced oxidative damage in plants, further field investigations and exploration of its mechanism of action are needed.


Subject(s)
Arsenic , Oryza , Antioxidants/metabolism , Arsenic/toxicity , Bicyclic Monoterpenes , Catalase/metabolism , Hydrogen Peroxide , Lipid Peroxidation , Oryza/metabolism , Oxidative Stress , Plant Roots/metabolism , Superoxide Dismutase/metabolism
7.
Environ Monit Assess ; 193(8): 526, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34322773

ABSTRACT

Industrial effluents contain hazardous substances that can be a serious threat to the agriculture and human health. In the present study, the cytotoxic and genotoxic impacts of agricultural soil from the industrial area of Dera Bassi (Punjab, India) have been evaluated. Assays such as defects in DNA repair in K-12 mutants of Escherichia coli and chromosomal aberrations in Allium cepa were used to estimate the acute toxicity and chromosomal mutagenesis, respectively. Atomic absorption spectrometry and GC-MS analysis revealed contamination of the soil with high concentrations of heavy metals and organic compounds, respectively. Dichloromethane extract of site I soil sample caused maximum damage to 40 µL mL-1 DNA repair defective mutants and showed 38 and 49% survival in lexA and recA mutants, respectively, which was least among all the sites. In A. cepa test, an inverse relationship between soil extract concentration and the mitotic index was observed. Exposure of growing roots of A. cepa to soil extracts induced chromosomal abnormalities and alterations in mitotic phases in root tip cells. The study concludes that agricultural sites near the industrial area were contaminated with genotoxic and mutagenic compounds. Hence, adequate measures should be taken to reduce the toxicity of industrial effluents discharged onto the agricultural fields.


Subject(s)
Environmental Monitoring , Soil , Agriculture , Chromosome Aberrations , DNA Damage , Humans , India , Onions/genetics , Plant Roots
8.
Environ Sci Pollut Res Int ; 28(44): 62431-62443, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34212330

ABSTRACT

Heavy metals' amassment in the soil environment is a threat to crop and agricultural sustainability and consequentially the global food security. For achieving enhancement of crop productivity in parallel to reducing chromium (Cr) load onto food chain demands continuous investigation and efforts to develop cost-effective strategies for maximizing crop yield and quality. In this context, we investigated the amelioration of Cr(VI) toxicity through ß-pinene in experimental dome simulating natural field conditions. The protective role of ß-pinene was determined on physiology, morphology and ultrastructure in Zea mays under Cr(VI) stress (250 and 500 µM). Results exhibited a marked reduction in the overall growth (shoot and root length and dry matter) of Z. mays plants subjected to Cr(VI) stress. Photosynthetic pigments (chlorophyll and carotenoids) were evidently reduced, and there was a loss of membrane integrity. Supplementation of ß-pinene (100 µM), however, declined the toxicity induced by Cr(VI). Interestingly, Cr-tolerant abilities were improved in relation to plant growth, photosynthetic pigments and membrane integrity with the combined treatment of Cr(VI) and ß-pinene. ß-Pinene also reduced the root-mediated uptake of Cr(VI) and translocation to shoots. Moreover, significant ultrastructural damages recorded in roots and shoots under Cr(VI) stress were partially reverted upon addition of ß-pinene. Our analyses revealed that ß-pinene mitigates Cr(VI) toxicity in Z. mays, either by membrane stabilization or serving as a barrier to the uptake of Cr from soil. Thus, exogenous supply of ß-pinene can be an effective alternative to mitigate Cr toxicity in soil. However, it is deemed essential to investigate further the responses throughout the life cycle of the plant on ß-pinene supplementation under natural conditions.


Subject(s)
Soil Pollutants , Zea mays , Antioxidants , Bicyclic Monoterpenes , Chromium/analysis , Chromium/toxicity , Plant Roots/chemistry , Soil Pollutants/toxicity
9.
Environ Sci Pollut Res Int ; 28(37): 51989-52000, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33999323

ABSTRACT

The current study investigated the putative role of salicylic acid (SA) in modulating Pb2+-induced DNA and oxidative damage in Allium cepa roots. Pb2+ exposure enhanced free radical generation and reduced DNA integrity and antioxidant machinery after 24 h; however, SA pre-treatment (for 24 h) ameliorated Pb2+ toxicity. Pb2+ exposure led to an increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation and enhanced superoxide radical and hydroxyl radical levels. SA improved the efficiency of enzymatic antioxidants (ascorbate and guaiacol peroxidases [APX, GPX], superoxide dismutases [SOD], and catalases [CAT]) at 50-µM Pb2+ concentration. However, SA pre-treatment could not improve the efficiency of CAT and APX at 500 µM of Pb2+ treatment. Elevated levels of ascorbate and glutathione were observed in A. cepa roots pre-treated with SA and exposed to 50 µM Pb2+ treatment, except for oxidized glutathione. Nuclear membrane integrity test demonstrated the ameliorating effect of SA by reducing the number of dark blue-stained nuclei as compared to Pb2+ alone treatments. SA was successful in reducing DNA damage in cell exposed to higher concentration of Pb2+ (500 µM) as observed through comet assay. The study concludes that SA played a major role in enhancing defense mechanism and protecting against DNA damage by acclimatizing the plant to Pb2+-induced toxicity.


Subject(s)
Onions , Salicylic Acid , Antioxidants , Catalase/metabolism , DNA Damage , Hydrogen Peroxide , Lead , Onions/metabolism , Oxidative Stress , Plant Roots/metabolism , Salicylic Acid/pharmacology
10.
Ecotoxicol Environ Saf ; 188: 109786, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31698176

ABSTRACT

In the last few decades, tremendous increase in the use of wireless electronic gadgets, particularly the cell phones, has significantly enhanced the levels of electromagnetic field radiations (EMF-r) in the environment. Therefore, it is pertinent to study the effect of these radiations on biological systems including plants. We investigated comparative cytotoxic and DNA damaging effects of 900 and 1800 MHz EMF-r in Allium cepa (onion) root meristematic cells in terms of mitotic index (MI), chromosomal aberrations (CAs) and single cell gel electrophoresis (comet assay). Onion bulbs were subjected to 900 and 1800 MHz (at power densities 261 ±â€¯8.50 mW m-2 and 332 ±â€¯10.36 mW m-2, respectively) of EMF-r for 0.5 h, 1 h, 2 h, and 4 h. Root length declined by 13.2% and 12.3%, whereas root thickness was increased by 46.7% and 48.3% after 4 h exposure to 900 MHz and 1800 MHz, respectively. Cytogenetic studies exhibited clastogenic effect of EMF-r as depicted by increased CAs and MI. MI increased by 36% and 53% after 2 and 4 h exposure to 900 MHz EMF-r, whereas it increased by 41% and 67% in response to 1800 MHz EMF-r. Aberration index was increased by 41%-266% and 14%-257% during 0.5-4 h of exposure to 900 MHz and 1800 MHz, respectively, over the control. EMF-r exposure decreased % head DNA (DNAH) and increased % tail DNA (DNAT) and olive tail moment (OTM) at both 900 and 1800 EMF-r. In 4 h exposure treatments, head DNA (%) declined by 19% and 23% at 900 MHz and 1800 MHz, respectively. DNAT and OTM were increased by 2.3 and 3.7 fold upon exposure to 900 MHz EMF-r over that in the control, whereas 2.8 and 5.8 fold increase was observed in response to 1800 MHz EMF-r exposure for 4 h and the difference was statistically significant. The study concludes that EMF-r in the communication range (900 and 1800 MHz) adversely affect root meristems in plants and induce cytotoxic and DNA damage. EMF-r induced DNA damage was more pronounced at 1800 MHz than that at 900 MHz.


Subject(s)
Chromosome Aberrations/radiation effects , DNA Damage , Electromagnetic Fields/adverse effects , Electromagnetic Radiation , Meristem/radiation effects , Onions/radiation effects , Cell Phone , Comet Assay , Dose-Response Relationship, Radiation , Meristem/cytology , Meristem/genetics , Mitotic Index , Onions/cytology , Onions/genetics , Time Factors
11.
Protoplasma ; 256(5): 1399-1407, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31115694

ABSTRACT

The present study evaluated the potential of 2100 MHz radiofrequency radiations to act as cytotoxic and genotoxic agent. Fresh onion (Allium cepa L.) roots were exposed to electromagnetic field radiations (EMF-r) for different durations (1 h and 4 h) and evaluated for mitotic index (MI), phase index, chromosomal aberrations, and DNA damage. DNA damage was investigated with the help of the comet assay by assessing various parameters like % head DNA (HDNA), % tail DNA (TDNA), tail moment (TM), and olive tail moment (OTM). Effects of EMF-r exposure were also compared with that of methyl methanesulfonate (MMS; 90 µM), which acted as a positive control. The post-exposure effects of EMF-r after providing the test plants with an acclimatization period of 24 h were also evaluated. Compared to the control, a significant increase in the MI and aberration percentage was recorded upon 4 h of exposure. However, no specific trend of phase index in response to exposure was detected. EMF-r exposure incited DNA damage with a significant decrease in HDNA accompanied by an increase in TDNA upon exposure of 4 h. However, TM and OTM did not change significantly upon exposure as compared to that of control. Analysis of the post-exposure effects of EMF-r did not show any significant change/recovery. Our data, thus, suggest the potential cytotoxic and genotoxic nature of 2100 MHz EMF-r. Our study bears great significance in view of the swiftly emergent EMF-r in the surrounding environment and their potential for inciting aberrations at the chromosomal level, thus posing a genetic hazard.


Subject(s)
Cell Phone/trends , DNA/radiation effects , Electromagnetic Radiation , Meristem/drug effects , Mitotic Index/methods , Onions/drug effects
12.
Ecotoxicol Environ Saf ; 171: 863-870, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30665103

ABSTRACT

In the present study, the essential oil (EO) of Hyptis suaveolens has been explored for the first time for its phytotoxic and cytotoxic activities. The phytotoxic activity was assessed against rice (Oryza sativa) and its major troublesome weed, Echinochloa crus-galli, under laboratory and screenhouse conditions. GC-MS analysis revealed EO to be monoterpenoid (~ 79% monoterpenes) in nature with α-phellandrene (22.8%), α-pinene (10.1%) and limonene (8.5%) as the major chemical constituents. The laboratory bioassay showed a complete growth inhibitory effect of EO (≥ 2 mg mL-1) towards the germination and seedling growth of E. crus-galli. However, the inhibitory effect on rice was much less (~40% inhibition). EO caused visible injury, reduction in chlorophyll content, cell viability and ultimately led to complete wilting of E. crus-galli plants. In addition, EO altered the cell division in the meristematic cells of Allium cepa as depicted by ~63% decrease in mitotic index. EO exposure induced several aberrations at chromosomal (c-mitosis, anaphase bridges, chromosomal breakage, vagrant chromosomes, and sticky chromosomes) and cytological level (cytoplasm destruction, peripheral nuclei, and bi-nucleate cells). The present study concludes that H. suaveolens EO possesses phytotoxic activity due to its mito-depressive activity, and could serve as a natural herbicide under sustainable agricultural practices.


Subject(s)
Herbicides , Hyptis/chemistry , Oils, Volatile/toxicity , Plant Oils/toxicity , Bicyclic Monoterpenes , Cell Division , Chromosome Aberrations , Cyclohexane Monoterpenes , Echinochloa/drug effects , Echinochloa/growth & development , Germination/drug effects , Herbicides/chemistry , Herbicides/toxicity , Limonene/analysis , Monoterpenes/analysis , Oils, Volatile/chemistry , Oryza/drug effects , Plant Oils/chemistry
13.
Ecotoxicology ; 23(7): 1292-304, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25023386

ABSTRACT

Plant responses to abiotic stress significantly affect the development of cells, tissues and organs. However, no studies correlating Pb-induced mitotic inhibition and DNA damage and the alterations in redox homeostasis during root division per se were found in the literature. Therefore, an experiment was conducted to evaluate the impact of Pb on mitotic activity and the associated changes in the oxidative metabolism in onion roots. The cytotoxic effect of Pb on cell division was assessed in the root meristems of Allium cepa (onion). The mitotic index (MI) was calculated and chromosomal abnormalities were sought. Pb-treatment induced a dose-dependent decrease in MI in the onion root tips and caused mitotic abnormalities such as distorted metaphase, fragments, sticky chromosomes, laggards, vagrant chromosomes and bridges. Single Cell Gel Electrophoresis was also performed to evaluate Pb induced genotoxicity. It was accompanied by altered oxidative metabolism in the onion root tips suggesting the interference of Pb with the redox homeostasis during cell division. There was a higher accumulation of malondialdehyde, conjugated dienes and hydrogen peroxide, and a significant increase in the activities of superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases in Pb-treated onion roots, whereas catalases activity exhibited a decreasing pattern upon Pb exposure. The study concludes that Pb-induced cytotoxicity and genotoxicity in the onion roots is mediated through ROS and is also tightly linked to the cell cycle. The exposure to higher concentrations arrested cell cycle leading to cell death, whereas different repair responses are generated at lower concentrations, thereby allowing the cell to complete the cell cycle.


Subject(s)
DNA Damage , Lead/toxicity , Mitotic Index , Onions/drug effects , Plant Roots/drug effects , Cell Division/drug effects , Chromosome Aberrations/chemically induced , Mutagenicity Tests , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
14.
Food Chem Toxicol ; 48(4): 1040-4, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20096322

ABSTRACT

The present study investigated the chemical characterization, and antioxidant activity of essential oil hydrodistilled from young and mature leaves of Artemisia scoparia. GC-MS analyses revealed a monoterpenoid nature (64-67%) with 44 and 31 constituents in young and mature leaves oil, respectively. The oil from young leaf contained greater amount of oxygenated compounds. Beta-myrcene (24.13%) and p-cymene (27.06%) were the major constituents in young and mature leaves oil, respectively. A. scoparia leaf oils (25-200 microg/ml) exhibited a strong 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity and antioxidant activity against hydroxyl radical and hydrogen peroxide. However, the activities of major constituent monoterpenes, beta-myrcene and p-cymene, were less. In general, the DPPH radical scavenging and antioxidant activity was in the order: mature leaf oil > young leaf oil > beta-myrcene > p-cymene.


Subject(s)
Artemisia/chemistry , Free Radical Scavengers/pharmacology , Plant Oils/pharmacology , Aging/physiology , Artemisia/growth & development , Chlorophyll/analysis , Free Radical Scavengers/chemistry , Gas Chromatography-Mass Spectrometry , Hydrogen Peroxide/chemistry , Plant Leaves/chemistry , Plant Oils/chemistry , Plant Proteins/chemistry , Thiobarbituric Acid Reactive Substances/metabolism
15.
J Chem Ecol ; 35(2): 154-62, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19194753

ABSTRACT

We investigated the chemical composition and phytotoxicity of the essential oil extracted from leaves of Artemisia scoparia Waldst. et Kit. (red stem wormwood, Asteraceae). GC/GC-MS analyses revealed 33 chemical constituents representing 99.83% of the oil. The oil, in general, was rich in monoterpenes that constitute 71.6%, with beta-myrcene (29.27%) as the major constituent followed by (+)-limonene (13.3%), (Z)-beta-ocimene (13.37%), and gamma-terpinene (9.51%). The oil and beta-myrcene were evaluated in a dose-response bioassay under laboratory conditions for phytotoxicity against three weeds-Avena fatua, Cyperus rotundus, and Phalaris minor. A significant reduction in germination, seedling growth, and dry matter accumulation was observed in the test weeds. At the lowest treatment of 0.07 mg/ml Artemisia oil, germination was reduced by 39%, 19%, and 10.6% in C. rotundus, P. minor, and A. fatua, respectively. However, the inhibitory effect of beta-myrcene was less. In general, a dose-dependent effect was observed and the growth declined with increasing concentration. Among the three weeds, the inhibitory effect was greatest on C. rotundus, so it was selected for further studies. We explored the explanation for observed growth inhibition in terms of reactive oxygen species (ROS: lipid peroxidation, membrane integrity, and amounts of conjugated dienes and hydrogen peroxide)-induced oxidative stress. Exposure of C. rotundus to Artemisia oil or beta-myrcene enhanced solute leakage, indicating membrane disintegration. There were increased levels of malondialdehyde and hydrogen peroxide, indicating lipid peroxidation and induction of oxidative stress. We conclude that Artemisia oil inhibits plant root growth through generation of ROS-induced oxidative damage.


Subject(s)
Artemisia/chemistry , Monoterpenes/toxicity , Oils, Volatile/toxicity , Plant Growth Regulators/toxicity , Reactive Oxygen Species/metabolism , Lipid Peroxidation , Monoterpenes/chemistry , Monoterpenes/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Leaves/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Plant Oils/toxicity , Plant Roots/growth & development
16.
Z Naturforsch C J Biosci ; 63(9-10): 663-6, 2008.
Article in English | MEDLINE | ID: mdl-19040104

ABSTRACT

The phytotoxicity of the three major monoterpene constituents of the essential oil from leaves of Artemisia scoparia Waldst. & Kit. (redstem wormwood) was investigated. GC/GC-MS analysis revealed that the essential oil (yield 0.84%) is a complex mixture containing 19 monoterpenes, 7 sesquiterpenes and 15 other compounds--aliphatic alcohols, ketones, aromatic hydrocarbons and esters. The three major monoterpenes were beta-myrcene (30.2%), p-cymene (12.8%) and dl-limonene (12.4%). The essential oil and the three monoterpenes exhibited phytotoxicity and reduced germination, seedling growth, chlorophyll content and percent respiration of Avena sativa and Triticum aestivum in a dose-response manner. The inhibitory effect of monoterpenes was comparatively smaller than of the crude essential oil and beta-myrcene was most toxic followed by p-cymene, whereas limonene was least toxic. The study suggests that A. scoparia oil and beta-myrcene can be explored for phytotoxicity against weeds.


Subject(s)
Artemisia/chemistry , Oils, Volatile/isolation & purification , Plant Leaves/chemistry , Acyclic Monoterpenes , Alkenes/isolation & purification , Alkenes/pharmacology , Cyclohexenes/isolation & purification , Cyclohexenes/pharmacology , Cymenes , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Germination/physiology , India , Limonene , Monoterpenes/isolation & purification , Monoterpenes/pharmacology , Oils, Volatile/pharmacology , Seedlings/chemistry , Seedlings/drug effects , Seedlings/growth & development , Terpenes/isolation & purification , Terpenes/pharmacology , Triticum/drug effects , Triticum/growth & development
17.
Z Naturforsch C J Biosci ; 62(5-6): 367-72, 2007.
Article in English | MEDLINE | ID: mdl-17708442

ABSTRACT

Phytotoxicity of parthenin, a sesquiterpene lactone, was evaluated against four weedy species (Amaranthus viridis, Cassia occidentalis, Echinochloa crus-galli, and Phalaris minor) through a series of experiments conducted under laboratory or greenhouse conditions to assess its herbicidal potential. Under laboratory conditions, parthenin (0.5-2 mM) severely reduced seedling growth (root and shoot) and dry weight of test weeds. However, the effect was greater on root growth. Parthenin (1 mM) suppressed the mitotic activity in the onion root tip cells that could possibly be responsible for the reduction in seedling growth. Both pre- and post-emergent application of parthenin caused a significant loss of chlorophyll pigments and affected photosynthesis. Parthenin ( > or =1 mM) caused an excessive electrolyte leakage in the plant tissues which was light-dependent. The root inhibition was associated with swelling and blackening of the root tip, shriveling and damage to the epidermal tissue and non-formation of root hairs. The study concludes that parthenin possesses weed-suppressing potential (both pre- and post-).


Subject(s)
Cell Survival/drug effects , Helianthus/chemistry , Plant Cells , Sesquiterpenes/toxicity , Allergens/toxicity , Chlorophyll/physiology , Helianthus/physiology , Onions/cytology , Onions/drug effects , Photosynthesis , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Plant Roots/drug effects , Plant Roots/growth & development , Plants/drug effects
18.
Z Naturforsch C J Biosci ; 61(5-6): 334-40, 2006.
Article in English | MEDLINE | ID: mdl-16869489

ABSTRACT

A study was undertaken to assess the phytotoxicity of citronellal, an oxygenated monoterpenoid with an aldehyde group, towards some weedy species [Ageratum conyzoides L., Chenopodium album L., Parthenium hysterophorus L., Malvastrum coromandelianum (L.), Garcke, Cassia occidentalis L. and Phalaris minor Retz.]. A significant effect on weed emergence and early seedling growth was observed in a dose-response based laboratory bioassay in a sand culture. Emergence of all test weeds was completely inhibited at 100 micro/g sand content of citronellal. Seeds of A. conyzoides and P. hysterophorus failed to emerge even at 50 microg/g content. Root length was inhibited more compared to shoot length. The failure of root growth was attributed to the effect of citronellal on the mitotic activity of growing root tips cells as ascertained by the onion root tip bioassay. At 2.5 mM treatment of citronellal, mitosis was completely suppressed and at higher concentrations cells showed various degrees of distortion and were even enucleated. The post-emergent application of citronellal also caused visible injury in the form of chlorosis and necrosis, leading to wilting and even death of test weeds. Among the test weeds, the effect was severe on C. album and P. hysterophorus. There was loss of chlorophyll pigment and reduction in cellular respiration upon citronellal treatment indicating the impairment of photosynthetic and respiratory metabolism. Scanning electron microscopic studies in C. occidentalis leaves upon treatment of citronellal revealed disruption of cuticular wax, clogging of stomata and shrinkage of epidermal cells at many places. There was a rapid electrolyte leakage in the leaf tissue upon exposure to citronellal during the initial few hours. In P. minor electrolyte leakage in response to 2 mM citronellal was closer to the maximum leakage that was obtained upon boiling the tissue. The rapid ion leakage is indicative of the severe effect of citronellal on the membrane structure and loss of membrane integrity. In all, the study concludes that citronellal causes a severe phytotoxicity on the weeds.


Subject(s)
Cymbopogon , Monoterpenes/chemistry , Monoterpenes/toxicity , Plants/drug effects , Ageratum , Chenopodium , Microscopy, Electron, Scanning , Mitosis/drug effects , Monoterpenes/isolation & purification , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plant Leaves/chemistry , Plant Leaves/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL