Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 912: 169331, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38103619

ABSTRACT

In today's era, nanoparticles (NPs) have become an integral part of human life, finding extensive applications in various fields of science, pharmacy, medicine, industry, electronics, and communication. The increasing popularity of NP usage worldwide is a testament to their tremendous potential. However, the widespread deployment of NPs unavoidably leads to their release into the environmental matrices, resulting in persistence in ecosystems and bioaccumulation in organisms. Understanding the environmental behavior of NPs poses a significant challenge due to their nanoscale size. Given the current environmental releases of NPs, known negative consequences, and the limited knowledge available for risk management, comprehending the toxicity of NPs in ecosystems is both awaiting and crucial. The present review aims to unravel the potential environmental influences of nano-scaled materials, and provides in-depth inferences of the current knowledge and understanding in this field. The review comprehensively summarizes the sources, fate, transport, toxicity, health risks, and remediation solutions associated with NP pollution in aquatic and soil ecosystems. Furthermore, it addresses the knowledge gaps and outlines further investigation priorities for the sustainable control of NP pollution in these environments. By gaining a holistic understanding of these aspects, we can work toward ensuring the responsible and sustainable use of NPs in today's fast-growing world.


Subject(s)
Ecosystem , Nanoparticles , Humans , Nanoparticles/toxicity , Soil , Environmental Pollution , Risk Management
2.
Environ Res ; 227: 115725, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37001848

ABSTRACT

The viral diseases encouraged scientific community to evaluate the natural antiviral bioactive components rather than protease inhibitors, harmful organic molecules or nucleic acid analogues. For this purpose, medicinal plants have been gaining tremendous importance in the field of attenuating the various kinds of infectious and non-infectious diseases. Most of the commonly used medicines contains the bioactive components/phytoconstituents that are generally extracted from medicinal plants. Moreover, the medicinal plants offer many advantages for the recovery applications of infectious disease especially in viral infections including HIV-1, HIV-2, Enterovirus, Japanese Encephalitis Virus, Hepatitis B virus, Herpes Virus, Respiratory syncytial virus, Chandipura virus and Influenza A/H1N1. Considering the lack of acceptable drug candidates and the growing antimicrobial resistance to existing drug molecules for many emerging viral diseases, medicinal plants may offer best platform to develop sustainable/efficient/economic alternatives against viral infections. In this regard, for exploring and analyzing large volume of scientific data, bibliometric analysis was done using VOS Viewer shedding light on the emerging areas in the field of medicinal plants and their antiviral activity. This review covers most of the plant species that have some novel bioactive compound like gnidicin, gniditrin, rutin, apigenin, quercetin, kaempferol, curcumin, tannin and oleuropin which showed high efficacy to inhibit the several disease causing virus and their mechanism of action in HIV, Covid-19, HBV and RSV were discussed. Moreover, it also delves the in-depth mechanism of medicinal with challenges and future prospective. Therefore, this work delves the key role of environment in the biological field.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Plants, Medicinal , Virus Diseases , Plant Extracts/pharmacology , Virus Diseases/drug therapy , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
3.
Environ Res ; 177: 108569, 2019 10.
Article in English | MEDLINE | ID: mdl-31352301

ABSTRACT

The development of benign and efficient approaches for treating industrial grade toxic organic dyes is an ongoing challenge. To this end, copper oxide nanoparticles (CuO NPs) were prepared by a simple, environment friendly, and economical green synthesis procedure by using Psidium guajava leaf extract as reducing agent (i.e., for the reduction of metal salt) as well as capping agent and copper acetate monohydrate as metal salt. The formation of mono-dispersed and spherical (average size 2-6 nm with BET surface area 52.6 m2/g) CuO NPs was confirmed by various spectroscopic and microscopic techniques. The CuO NPs exhibited excellent degradation efficiency for the industrial dyes, i.e., Nile blue (NB) (93% removal in 120 min) and reactive yellow 160 (RY160) (81% removal in 120 min) with apparent rate constants of 0.023 and 0.014 min-1, respectively. The CuO catalyst was found to be reusable for photocatalytic dye degradation even after five consecutive cycles. The limit of detection (LOD) values for NB and RY160 were 4 and 9 mg/L, respectively. In light of their high reusability and photocatalytic efficiency along with adaptability to green synthesis, the use of biogenic CuO NPs is a promising option for the purification of water resources contaminated with industrial dye.


Subject(s)
Coloring Agents/chemistry , Metal Nanoparticles/chemistry , Copper/chemistry , Nanoparticles , Oxides , Photochemical Processes , Plant Extracts , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL