Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
PLoS One ; 8(12): e83008, 2013.
Article in English | MEDLINE | ID: mdl-24376624

ABSTRACT

We estimated the nutritive value, vitamin content, amino acid composition, fatty acid content, and mineral profile of a phytococktail comprising sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca), and roseroot (Rhodiola imbricata) from trans-Himalaya. The free vitamin forms in the phytococktail were determined by rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS). Vitamin E and B-complex vitamins were detected as the principle vitamins. Reversed-phase high performance liquid chromatography (RP-HPLC) with pre-column derivatization was used for identification and quantification of amino acids. Eight essential and eleven non-essential amino acids were quantified, and the content ranged between 76.33 and 9485.67 µg/g. Among the essential amino acids, L-methionine, L-phenylalanine, L-lysine, L-leucine, and L-histidine were found to be the dominant contributors. We also quantified the fatty acids in the phytococktail by using gas chromatography coupled with a flame ionization detector (GC-FID) with fatty acid methyl esters (FAMEs) derivatization. The analysis revealed the presence of 4 major fatty acids contributing to the total lipid content. Palmitic acid was found to be the rich source of saturated fatty acid (SFA) and constituted ∼31% of the total lipid content. Among the unsaturated fatty acids (UFAs), palmitoleic acid (43.47%), oleic acid (20.89%), and linoleic acid (4.31%) were prominent. The mineral profiling was carried out by inductively coupled plasma optical emission spectrometer (ICP-OES), and it was found to contain a number of important dietary mineral elements. The harsh climatic conditions, difficult terrain, and logistic constraints at high altitude regions of Indian trans-Himalayan cold desert lead to the scarcity of fresh fruits and vegetables. Therefore, the source of multiple vitamins, essential amino acids, fatty acids, and dietary minerals from the phytococktail would provide great health benefit in the stressful environment and could be used as a high value nutritional supplement.


Subject(s)
Dietary Supplements , Hippophae/chemistry , Prunus/chemistry , Rhodiola/chemistry , Altitude , Amino Acids/analysis , Fatty Acids/analysis , Fruit/chemistry , Humans , India , Minerals/analysis , Plant Extracts/analysis , Plant Roots/chemistry , Vitamins/analysis
2.
Aviat Space Environ Med ; 79(12): 1106-11, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19070306

ABSTRACT

INTRODUCTION: Humans have a number of mechanisms for protection against reactive oxygen species, but under stressful conditions these defenses are not completely successful. Glutathione plays an important role in protection against free radicals and reactive oxygen species induced damages. The present study was undertaken to understand the effect of high-altitude (HA) exposure on glutathione metabolism and antioxidant status along with the effects of N-acetyl cysteine (NAC) and vitamin E supplementation in humans. METHODS: The study was conducted on 30 healthy male volunteers (age 22.9 +/- 2.6, mean +/- SD) divided into three groups. Group 1 was placebo control and 2 and 3 were supplemented with 400 mg of NAC or vitamin E, respectively, per day. The study was conducted initially at sea level (Phase I, 320 m); then the subjects were taken to high altitude (Phase II, 3600 m) by air. After a week at this altitude, subjects ascended on foot to an altitude of 4580 m (Phase III). RESULTS: Significant decreases in reduced glutathione and increases in oxidized glutathione levels were observed on HA exposure. Increase in glutathione peroxidase and glutathione reductase levels were also observed on HA exposure. Lower levels of plasma vitamin C and total antioxidant status were observed during HA exposure. The changes observed were less in the supplemented groups as compared to placebo control. DISCUSSION: Results indicate that HA exposure adversely affects glutathione metabolism and antioxidant defense mechanisms and these changes can be ameliorated through supplementation of NAC and vitamin E.


Subject(s)
Adaptation, Physiological/drug effects , Altitude , Antioxidants/therapeutic use , Dietary Supplements , Glutathione/metabolism , Oxidative Stress/drug effects , Acetylcysteine/therapeutic use , Adult , Ascorbic Acid/therapeutic use , Erythrocytes/drug effects , Free Radical Scavengers/therapeutic use , Free Radicals , Glutathione Peroxidase/drug effects , Glutathione Reductase/drug effects , Humans , Male , Prospective Studies , Reactive Oxygen Species , Stress, Physiological/drug effects , Tocopherols/therapeutic use
3.
Exp Physiol ; 93(10): 1139-46, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18567603

ABSTRACT

The concept of L-carnitine (L-CAR) supplementation to improve muscular performance is based on the role of L-CAR in regulating aerobic metabolism. L-CAR has also been found to attenuate free radical-induced oxidative stress in various pathological conditions. Thus, it was hypothesized that L-CAR may reduce intermittent hypoxia (IH)-induced oxidative stress and thereby benefit skeletal muscle performance. Thirty-six adult male Sprague-Dawley rats were divided into three groups: unexposed control; IH exposed (6 h day(-1) for 7 consecutive days), IH exposed with L-CAR supplementation (100 mg (kg body weight)(-1) day(-1)). Electrical stimulation was used to induce six tetanic muscular contractions in the gastrocnemius muscle after completion of exposure. Percentage mean performed work (PW), time of decay to 50% peak force of contraction (T50), and peak force of contraction (FPeak) were measured during tetanic contractions. Mean frequency (MF) was measured using electromyography between tetanic contractions. Muscle damage was indirectly measured from plasma creatine kinase (CK) and lipid hydroperoxide (LHP) levels. The levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl (PC) and LHP were estimated in the muscle tissue to investigate the efficacy of L-CAR in attenuating oxidative stress. Significant reduction in TBARS, PC and LHP levels and CK activity in the L-CAR-supplemented IH group as compared to the IH placebo group suggests that L-CAR reduces oxidative damage and thereby delays muscular fatigue, which was evident from MF, T50, PW and FPeak. From these studies, we conclude that L-CAR delays muscle fatigue by the reducing free radical-induced oxidative damage of IH exposure.


Subject(s)
Carnitine/pharmacology , Hypoxia/physiopathology , Muscle Fatigue/drug effects , Oxidative Stress/drug effects , Vitamin B Complex/pharmacology , Animals , Creatine Kinase, MM Form/metabolism , Glutathione/metabolism , Lipid Peroxides/metabolism , Male , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Thiobarbituric Acid Reactive Substances/metabolism
4.
J Environ Sci Health B ; 43(1): 27-33, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18161570

ABSTRACT

A fungal strain able to use atrazine (2-chloro-4-ethylamino-5-isopropylamino-1,3,5-triazine) as a source of nitrogen was isolated from a corn field soil that has been previously treated with the herbicide. This strain was purified and acclimatized to atrazine at a higher level in the laboratory. A supplemented N was required to trigger the reaction. Atrazine was degraded at a faster rate in inoculated mineral salt medium (MSM) than non-inoculated MSM. Within 20 days, nearly 34% of the atrazine was degraded in inoculated medium while only 2% of the herbicide was degraded in non-inoculated medium. Degradation of atrazine by the isolated fungal strain was also studied in sterile and non-sterile soil to determine the compatibility of the isolated strain with native microorganisms in soil. The degradation of atrazine was found to be more in inoculated sterile soil than in inoculated non-sterile soil. Cell free extract (CFE) of fungal mycelium degraded about 50% of the atrazine in buffer in 96 hours compared to the control. Four atrazine metabolites were isolated and characterized by LCMS. On the basis of morphological parameters the isolate was identified as Penicillium species. Results indicated that the microorganism may be useful for remediation of atrazine-contaminated soil.


Subject(s)
Atrazine/metabolism , Herbicides/metabolism , Penicillium/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL