Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Arch Biochem Biophys ; 749: 109792, 2023 11.
Article in English | MEDLINE | ID: mdl-37863349

ABSTRACT

Phenylketonuria (PKU) is the most common inherited metabolic disorders caused by severe deficiency or absence of phenylalanine hydroxylase activity that converts phenylalanine (Phe) to tyrosine. PKU patients were treated with a Phe restricted diet supplemented with a special formula containing l-carnitine (L-car), well-known antioxidant compound. The lack of treatment can cause neurological and cognitive impairment, as severe mental retardation, neuronal cell loss and synaptic density reduction. Although Phe has been widely demonstrated to be involved in PKU neurotoxicity, the mechanisms responsible for the CNS injury are still not fully known. In this work, we evaluated markers of neurodegeneration, namely BDNF (brain-derived neurotrophic factor), PAI-1 total (Plasminogen activator inhibitor-1 total), Cathepsin D, PDGF AB/BB (platelet-derived growth factor), and NCAM (neuronal adhesion molecule) in plasma of PKU patients at early and late diagnosis and under treatment. We found decreased Phe levels and increased L-car concentrations in PKU patients treated with L-car compared to the other groups, indicating that the proposed treatment was effective. Furthermore, we found increased BDNF levels in the patients under treatment compared to patients at early diagnosis, and a positive correlation between BDNF and L-car and a negative correlation between BDNF and Phe. Our results may indicate that in PKU patients treated with L-car there is an attempt to adjust neuronal plasticity and recover the damage suffered, reflecting a compensatory response to brain injury.


Subject(s)
Carnitine , Phenylketonurias , Humans , Brain-Derived Neurotrophic Factor , Phenylketonurias/drug therapy , Dietary Supplements , Antioxidants , Phenylalanine , Becaplermin
2.
Cell Biochem Funct ; 41(4): 490-500, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37170672

ABSTRACT

Phenylketonuria (PKU) was the first genetic disease to have an effective therapy, which consists of phenylalanine intake restriction. However, there are patients who do not adhere to treatment and/or are not submitted to neonatal screening. PKU patients present L-carnitine (L-car) deficiency, compound that has demonstrated an antioxidant and anti-inflammatory role in metabolic diseases. This study evaluated the effect caused by exposure time to high Phe levels in PKU patients at early and late diagnosis, through pro- and anti-inflammatory cytokines, as well as the L-car effect in patients under treatment. It was observed that there was a decrease in phenylalanine levels in treated patients compared to patients at diagnosis, and an increase in L-car levels in the patients under treatment. Inverse correlation between Phe versus L-car and nitrate plus nitrite versus L-car in PKU patients was also showed. We found increased proinflammatory cytokines levels: interleukin (IL)-1ß, interferons (IFN)-gamma, IL-2, tumor necrosis factor (TNF)-alpha, IL-8 and IL-6 in the patients at late diagnosis compared to controls, and IL-8 in the patients at early diagnosis and treatment compared to controls. Increased IL-2, TNF-alpha, IL-6 levels in the patients at late diagnosis compared to early diagnosis were shown, and reduced IL-6 levels in the treated patients compared to patients at late diagnosis. Moreover, it verified a negative correlation between IFN-gamma and L-car in treated patients. Otherwise, it was observed that there were increased IL-4 levels in the patients at late diagnosis compared to early diagnosis, and reduction in treated patients compared to late diagnosed patients. In urine, there was an increase in 8-isoprostane levels in the patients at diagnosis compared to controls and a decrease in oxidized guanine species in the treated patients compared to the diagnosed patients. Our results demonstrate for the first time in literature that time exposure to high Phe concentrations generates a proinflammatory status, especially in PKU patients with late diagnosis. A pro-oxidant status was verified in not treated PKU patients. Our results demonstrate the importance of early diagnosis and prompt start of treatment, in addition to the importance of L-car supplementation, which can improve cellular defense against inflammation and oxidative damage in PKU patients.


Subject(s)
Cytokines , Phenylketonurias , Infant, Newborn , Humans , Phenylalanine , Delayed Diagnosis , Interleukin-2 , Interleukin-6 , Interleukin-8 , Carnitine/pharmacology , Phenylketonurias/diagnosis , Phenylketonurias/drug therapy , Phenylketonurias/urine , Tumor Necrosis Factor-alpha
3.
Metab Brain Dis ; 36(7): 1957-1968, 2021 10.
Article in English | MEDLINE | ID: mdl-34216350

ABSTRACT

Although phenylalanine (Phe) is known to be neurotoxic in phenylketonuria (PKU), its exact pathogenetic mechanisms of brain damage are still poorly known. Furthermore, much less is known about the role of the Phe derivatives phenylacetic (PAA), phenyllactic (PLA) and phenylpyruvic (PPA) acids that also accumulate in this this disorder on PKU neuropathology. Previous in vitro and in vivo studies have shown that Phe elicits oxidative stress in brain of rodents and that this deleterious process also occurs in peripheral tissues of phenylketonuric patients. In the present study, we investigated whether Phe and its derivatives PAA, PLA and PPA separately or in combination could induce reactive oxygen species (ROS) formation and provoke DNA damage in C6 glial cells. We also tested the role of L-carnitine (L-car), which has been recently considered an antioxidant agent and easily cross the blood brain barrier on the alterations of C6 redox status provoked by Phe and its metabolites. We first observed that cell viability was not changed by Phe and its metabolites. Furthermore, Phe, PAA, PLA and PPA, at concentrations found in plasma of PKU patients, provoked marked DNA damage in the glial cells separately and when combined. Of note, these effects were totally prevented (Phe, PAA and PPA) or attenuated (PLA) by L-car pre-treatment. In addition, a potent ROS formation also induced by Phe and PAA, whereas only moderate increases of ROS were caused by PPA and PLA. Pre-treatment with L-car also prevented Phe- and PAA-induced ROS generation, but not that provoked by PLA and PPA. Thus, our data show that Phe and its major metabolites accumulated in PKU provoke extensive DNA damage in glial cells probably by ROS formation and that L-car may potentially represent an adjuvant therapeutic agent in PKU treatment.


Subject(s)
Brain Injuries , Phenylketonurias , Brain Injuries/drug therapy , Carnitine/pharmacology , Carnitine/therapeutic use , Humans , Keto Acids/pharmacology , Oxidative Stress , Phenylalanine/pharmacology , Phenylalanine/therapeutic use
4.
Arch Biochem Biophys ; 709: 108970, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34181873

ABSTRACT

Glutaric acidemia type 1 (GA1) is caused by glutaryl-CoA dehydrogenase deficiency that leads to a blockage in the metabolic route of the amino acids lysine and tryptophan and subsequent accumulation of glutaric acid (GA), 3-hydroxyglutaric acids and glutarylcarnitine (C5DC). Patients predominantly manifest neurological symptoms, associated with acute striatal degeneration, as well as progressive cortical and striatum injury whose pathogenesis is not yet fully established. Current treatment includes protein/lysine restriction and l-carnitine supplementation of (L-car). The aim of this work was to evaluate behavior parameters and pro-inflammatory factors (cytokines IL-1ß, TNF-α and cathepsin-D levels), as well as the anti-inflammatory cytokine IL10 in striatum of knockout mice (Gcdh-/-) and wild type (WT) mice submitted to a normal or a high Lys diet. The potential protective effects of L-car treatment on these parameters were also evaluated. Gcdh-/- mice showed behavioral changes, including lower motor activity (decreased number of crossings) and exploratory activity (reduced number of rearings). Also, Gcdh-/- mice had significantly higher concentrations of glutarylcarnitine (C5DC) in blood and cathepsin-D (CATD), interleukin IL-1ß and tumor factor necrosis alpha (TNF-α) in striatum than WT mice. Noteworthy, L-car treatment prevented most behavioral alterations, normalized CATD levels and attenuated IL-1ß levels in striatum of Gcdh-/- mice. Finally, IL-1ß was positively correlated with CATD and C5DC levels and L-car was negatively correlated with CATD. Our results demonstrate behavioral changes and a pro-inflammatory status in striatum of the animal model of GA1 and, most importantly, L-car showed important protective effects on these alterations.


Subject(s)
Amino Acid Metabolism, Inborn Errors/drug therapy , Brain Diseases, Metabolic/drug therapy , Carnitine/therapeutic use , Glutaryl-CoA Dehydrogenase/deficiency , Inflammation/drug therapy , Neuroprotective Agents/therapeutic use , Amino Acid Metabolism, Inborn Errors/genetics , Animals , Brain Diseases, Metabolic/genetics , Carnitine/analogs & derivatives , Carnitine/metabolism , Cathepsin D/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/genetics , Grooming/drug effects , Inflammation/genetics , Interleukin-1beta/metabolism , Locomotion/drug effects , Lysine/pharmacology , Mice, Knockout , Open Field Test/drug effects , Transforming Growth Factor beta/metabolism
5.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Article in English | MEDLINE | ID: mdl-33620579

ABSTRACT

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Subject(s)
Amino Acids, Branched-Chain/blood , Cerebral Cortex/drug effects , Maple Syrup Urine Disease/metabolism , Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Phenylbutyrates/administration & dosage , Animals , Catalase/metabolism , Cerebral Cortex/metabolism , Glutathione Peroxidase/metabolism , Maple Syrup Urine Disease/blood , Maple Syrup Urine Disease/chemically induced , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
6.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2420-2427, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31181292

ABSTRACT

The deficiency of the enzyme glutaryl-CoA dehydrogenase leads to predominant accumulation of glutaric acid (GA) in the organism and is known as glutaric acidemia type I (GA1). Despite the mechanisms of brain damage involved in GA1 are not fully understood, oxidative stress may be involved in this process. Treatment is based on protein/lysine (Lys) restriction and l-carnitine (L-car) supplementation. L-car was recently shown to have an important antioxidant role. A knockout mice model (Gcdh-/-) submitted to a dietary overload of Lys was developed to better understand the GA1 pathogenesis. In this study, we evaluated L-car and glutarylcarnitine levels, the lipid and protein damage, reactive oxygen species (ROS) production and antioxidant enzymes activities in striatum of Gcdh-/- and wild-type (WT) mice. We also determined the effect of the L-car treatment on these parameters. Thirty-day-old Gcdh-/- and WT mice were fed a normal chow (0.9% Lys) or submitted to a high Lys diet (4.7%) for 72 h. Additionally, these animals were administered with three intraperitoneal injections of saline or L-car in different times. Gcdh-/- mice were deficient in L-car and presented a higher glutarylcarnitine levels. They also presented lipid and protein damage, an increased ROS production and altered antioxidant enzymes compared to WT mice. Additionally, mice exposed to Lys overload presented higher alterations in these parameters than mice under normal diet, which were significantly decreased or normalized in those receiving L-car. Thus, we demonstrated a new beneficial effect of the L-car treatment attenuating or abolishing the oxidative stress process in Gcdh-/- mice.


Subject(s)
Carnitine/pharmacology , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/genetics , Lysine/pharmacology , Oxidative Stress/drug effects , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/pathology , Amino Acid Metabolism, Inborn Errors/veterinary , Animals , Brain Diseases, Metabolic/metabolism , Brain Diseases, Metabolic/pathology , Brain Diseases, Metabolic/veterinary , Carnitine/analogs & derivatives , Carnitine/metabolism , Diet/veterinary , Disease Models, Animal , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/metabolism , Glutathione Peroxidase/metabolism , Lysine/blood , Mice , Mice, Knockout , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
7.
Arch Biochem Biophys ; 668: 16-22, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31047871

ABSTRACT

3-hydroxy-3-methylglutaric aciduria (HMGA) is an inherited disorder of the leucine catabolic pathway in which occurs a deficiency of the 3-hydroxy-3-methylglutaryl-CoA lyase enzyme. Therefore, the organic acids 3-hydroxy-3-methylglutaric (HMG) and 3-methylglutaric (MGA), mainly, accumulate in tissues of affected patients. Lately, much attention has been focused on free radicals as mediators of tissue damage in human diseases, causing lipid peroxidation, protein oxidation and DNA damage. The treatment of this disease is based in a restricted protein ingest and supplementation with l-carnitine (LC), an antioxidant and detoxifying agent. In the present work, we investigated the in vitro oxidative damage to DNA induced by the accumulation of organic acids and oxidative stress parameters in vivo of patients with 3-HMG, as well as the effect of the recommended therapy. The in vitro DNA damage was analyzed by the alkaline comet assay in leukocytes incubated with HMG and MGA (1 mM, 2.5 mM and 5 mM) and co-incubated with LC (90 µM and 150 µM). The in vivo urinary 15-F2t-isoprostane levels and urinary oxidized guanine species were measured by ELISA kits in patient's urine before and after the treatment with LC. HMG and MGA induced a DNA damage index (DI) significantly higher than that of the control group. The DI was significantly reduced in the presence of LC. It was also verified a significant increase of oxidized guanine species and urinary isoprostane levels, biomarker of oxidative DNA damage and lipid peroxidation respectively, in patients before treatment. After the treatment and supplementation with LC, patients presented significantly lower levels of those biomarkers. Analyzing the data together, we can conclude that HMGA patients present oxidative lipid and DNA damage, which is induced by HMG and MGA, and the antioxidant therapy with LC can prevent that kind of injuries.


Subject(s)
Acetyl-CoA C-Acetyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/drug therapy , Carnitine/therapeutic use , DNA Damage/drug effects , Meglutol/analogs & derivatives , Meglutol/metabolism , 8-Hydroxy-2'-Deoxyguanosine/urine , Acetyl-CoA C-Acetyltransferase/metabolism , Acetyl-CoA C-Acetyltransferase/urine , Adolescent , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/urine , Child , Child, Preschool , Dinoprost/analogs & derivatives , Dinoprost/urine , Guanine/analogs & derivatives , Guanine/urine , Guanosine/analogs & derivatives , Guanosine/urine , Humans , Infant , Lipid Peroxidation/drug effects
8.
J Cell Biochem ; 119(12): 10021-10032, 2018 12.
Article in English | MEDLINE | ID: mdl-30129250

ABSTRACT

The deficiency of the enzyme glutaryl-CoA dehydrogenase, known as glutaric acidemia type I (GA-I), leads to the accumulation of glutaric acid (GA) and glutarilcarnitine (C5DC) in the tissues and body fluids, unleashing important neurotoxic effects. l-carnitine (l-car) is recommended for the treatment of GA-I, aiming to induce the excretion of toxic metabolites. l-car has also demonstrated an important role as antioxidant and anti-inflammatory in some neurometabolic diseases. This study evaluated GA-I patients at diagnosis moment and treated the oxidative damage to lipids, proteins, and the inflammatory profile, as well as in vivo and in vitro DNA damage, reactive nitrogen species (RNS), and antioxidant capacity, verifying if the actual treatment with l-car (100 mg kg-1 day-1 ) is able to protect the organism against these processes. Significant increases of GA and C5DC were observed in GA-I patients. A deficiency of carnitine in patients before the supplementation was found. GA-I patients presented significantly increased levels of isoprostanes, di-tyrosine, urinary oxidized guanine species, and the RNS, as well as a reduced antioxidant capacity. The l-car supplementation induced beneficial effects reducing these biomarkers levels and increasing the antioxidant capacity. GA, in three different concentrations, significantly induced DNA damage in vitro, and the l-car was able to prevent this damage. Significant increases of pro-inflammatory cytokines IL-6, IL-8, GM-CSF, and TNF-α were shown in patients. Thus, the beneficial effects of l-car presented in the treatment of GA-I are due not only by increasing the excretion of accumulated toxic metabolites, but also by preventing oxidative damage.


Subject(s)
Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/metabolism , Carnitine/pharmacology , DNA Damage , Glutaryl-CoA Dehydrogenase/deficiency , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carnitine/therapeutic use , Child , Child, Preschool , Female , Glutaryl-CoA Dehydrogenase/drug effects , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Infant , Male , Protective Agents/pharmacology , Protective Agents/therapeutic use , Reactive Nitrogen Species
9.
Int J Dev Neurosci ; 42: 10-4, 2015 May.
Article in English | MEDLINE | ID: mdl-25680940

ABSTRACT

Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acids (BCAA). The defect in the branched-chain α-keto acid dehydrogenase complex activity leads to an accumulation of these compounds and their corresponding α-keto-acids and α-hydroxy-acids. Studies have shown that oxidative stress may be involved in neuropathology of MSUD. L-carnitine (L-car), which has demonstrated an important role as antioxidant by reducing and scavenging free radicals formation and by enhancing the activity of antioxidant enzymes, have been used in the treatment of some metabolic rare disorders. This study evaluated the oxidative stress parameters, di-tyrosine, isoprostanes and antioxidant capacity, in urine of MSUD patients under protein-restricted diet supplemented or not with L-car capsules at a dose of 50 mg kg(-1) day(-1). It was also determined urinary α-keto isocaproic acid levels as well as blood free L-car concentrations in blood. It was found a deficiency of carnitine in patients before the L-car supplementation. Significant increases of di-tyrosine and isoprostanes, as well as reduced antioxidant capacity, were observed before the treatment with L-car. The L-car supplementation induced beneficial effects on these parameters reducing the di-tyrosine and isoprostanes levels and increasing the antioxidant capacity. It was also showed a significant increase in urinary of α-ketoisocaproic acid after 2 months of L-car treatment, compared to control group. In conclusion, our results suggest that L-car may have beneficial effects in the treatment of MSUD by preventing oxidative damage to the cells and that urine can be used to monitorize oxidative damage in patients affected by this disease.


Subject(s)
Biomarkers/urine , Dietary Supplements , Maple Syrup Urine Disease/urine , Amino Acids/urine , Analysis of Variance , Antioxidants/metabolism , Child , Child, Preschool , Dinoprost/analogs & derivatives , Enzyme-Linked Immunosorbent Assay , Female , Humans , Isoprostanes/urine , Keto Acids/urine , Male , Maple Syrup Urine Disease/diet therapy , Tandem Mass Spectrometry , Tyrosine/urine
10.
Cell Mol Neurobiol ; 34(2): 157-65, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24220995

ABSTRACT

Maple syrup urine disease (MSUD) is a metabolic disease caused by a deficiency in the branched-chain α-keto acid dehydrogenase complex, leading to the accumulation of branched-chain keto acids and their corresponding branched-chain amino acids (BCAA) in patients. Treatment involves protein-restricted diet and the supplementation with a specific formula containing essential amino acids (except BCAA) and micronutrients, in order to avoid the appearance of neurological symptoms. Although the accumulation of toxic metabolites is associated to appearance of symptoms, the mechanisms underlying the brain damage in MSUD remain unclear, and new evidence has emerged indicating that oxidative stress contributes to this damage. In this context, this review addresses some of the recent findings obtained from cells lines, animal studies, and from patients indicating that oxidative stress is an important determinant of the pathophysiology of MSUD. Recent works have shown that the metabolites accumulated in the disease induce morphological alterations in C6 glioma cells through nitrogen reactive species generation. In addition, several works demonstrated that the levels of important antioxidants decrease in animal models and also in MSUD patients (what have been attributed to protein-restricted diets). Also, markers of lipid, protein, and DNA oxidative damage have been reported in MSUD, probably secondary to the high production of free radicals. Considering these findings, it is well-established that oxidative stress contributes to brain damage in MSUD, and this review offers new perspectives for the prevention of the neurological damage in MSUD, which may include the use of appropriate antioxidants as a novel adjuvant therapy for patients.


Subject(s)
Maple Syrup Urine Disease/pathology , Nervous System/pathology , Oxidative Stress , Animals , Antioxidants/metabolism , Disease Models, Animal , Free Radicals/metabolism , Humans
11.
Cell Mol Neurobiol ; 32(1): 77-82, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21833551

ABSTRACT

Propionic (PA) and methylmalonic (MMA) acidurias are inherited disorders caused by deficiency of propionyl-CoA carboxylase and methylmalonyl-CoA mutase, respectively. Affected patients present acute metabolic crises in the neonatal period and long-term neurological deficits. Treatments of these diseases include a protein restricted diet and L: -carnitine supplementation. L: -Carnitine is widely used in the therapy of these diseases to prevent secondary L: -carnitine deficiency and promote detoxification, and several recent in vitro and in vivo studies have reported antioxidant and antiperoxidative effects of this compound. In this study, we evaluated the oxidative stress parameters, isoprostane and di-tyrosine levels, and the antioxidant capacity, in urine from patients with PA and MMA at the diagnosis, and during treatment with L: -carnitine and protein-restricted diet. We verified a significant increase of isoprostanes and di-tyrosine, as well as a significant reduction of the antioxidant capacity in urine from these patients at diagnosis, as compared to controls. Furthermore, treated patients presented a marked reduction of isoprostanes and di-tyrosine levels in relation to untreated patients. In addition, patients with higher levels of protein and lipid oxidative damage, determined by di-tyrosine and isoprostanes levels, also presented lower urinary concentrations of total and free L: -carnitine. In conclusion, the present results indicate that treatment with low protein diet and L: -carnitine significantly reduces urinary biomarkers of protein and lipid oxidative damage in patients with disorders of propionate metabolism and that L: -carnitine supplementation may be specially involved in this protection.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acid Metabolism, Inborn Errors/urine , Carnitine/therapeutic use , Oxidative Stress/physiology , Propionates/metabolism , Amino Acid Metabolism, Inborn Errors/metabolism , Antioxidants/analysis , Antioxidants/metabolism , Carnitine/administration & dosage , Carnitine/analysis , Carnitine/urine , Child , Child, Preschool , Diet, Protein-Restricted , Dietary Supplements , Humans , Infant , Infant, Newborn , Matched-Pair Analysis , Methylmalonic Acid/metabolism , Methylmalonic Acid/urine , Oxidative Stress/drug effects , Propionates/urine , Treatment Outcome , Tyrosine/analysis , Tyrosine/urine
12.
Mol Genet Metab ; 104(1-2): 112-7, 2011.
Article in English | MEDLINE | ID: mdl-21742526

ABSTRACT

Homocystinuria is an inherited disorder biochemically characterized by high urinary excretion of homocystine and increased levels of homocysteine (Hcy) and methionine in biological fluids. Affected patients usually have a variety of clinical and pathologic manifestations. Previous experimental data have shown a relationship between Hcy and oxidative stress, although very little was reported on this process in patients with homocystinuria. Therefore, in the present study we evaluated parameters of oxidative stress, namely carbonyl formation, malondialdehyde (MDA) levels, sulfhydryl content and total antioxidant status (TAS) in patients with homocystinuria at diagnosis and under treatment with a protein restricted diet supplemented by pyridoxine, folate, betaine, and vitamin B(12). We also correlated plasma Hcy and methionine concentrations with the oxidative stress parameters examined. We found a significant increase of MDA levels and carbonyl formation, as well as a reduction of sulfhydryl groups and TAS in plasma of homocystinuric patients at diagnosis relatively to healthy individuals (controls). We also verified that Hcy levels were negatively correlated with sulfhydryl content and positively with MDA levels. Furthermore, patients under treatment presented a significant reduction of the content of MDA, Hcy and methionine concentrations relatively to patients at diagnosis. Taken together, the present data indicate that lipid and protein oxidative damages are increased and the antioxidant defenses diminished in plasma of homocystinuric patients, probably due to increased reactive species elicited by Hcy. It is therefore presumed that oxidative stress participates at least in part in the pathogenesis of homocystinuria.


Subject(s)
Homocysteine/blood , Homocystinuria/blood , Homocystinuria/pathology , Oxidative Stress , Adolescent , Adult , Antioxidants/metabolism , Case-Control Studies , Child , Child, Preschool , Female , Humans , Male , Malondialdehyde/blood , Protein Carbonylation , Sulfhydryl Compounds/blood , Young Adult
13.
Cell Mol Neurobiol ; 31(5): 653-62, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21516352

ABSTRACT

Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by severe deficiency of phenylalanine hydroxylase activity, leading to the accumulation of phenylalanine and its metabolites in blood and tissues of affected patients. Phenylketonuric patients present as the major clinical feature mental retardation, whose pathomechanisms are poorly understood. In recent years, mounting evidence has emerged indicating that oxidative stress is possibly involved in the pathology of PKU. This article addresses some of the recent developments obtained from animal studies and from phenylketonuric patients indicating that oxidative stress may represent an important element in the pathophysiology of PKU. Several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in plasma and erythrocytes of PKU patients, which may be due to an increased free radical generation or secondary to the deprivation of micronutrients which are essential for these defenses. Indeed, markers of lipid, protein, and DNA oxidative damage have been reported in PKU patients, implying that reactive species production is increased in this disorder. A considerable set of data from in vitro and in vivo animal studies have shown that phenylalanine and/or its metabolites elicit reactive species in brain rodent. These findings point to a disruption of pro-oxidant/antioxidant balance in PKU. Considering that the brain is particularly vulnerable to oxidative attack, it is presumed that the administration of appropriate antioxidants as adjuvant agents, in addition to the usual treatment based on restricted diets or supplementation of tetrahydrobiopterin, may represent another step in the prevention of the neurological damage in PKU.


Subject(s)
Oxidative Stress , Phenylketonurias/pathology , Animals , Antioxidants/metabolism , Free Radicals/metabolism , Humans , Models, Biological , Nerve Degeneration/complications , Nerve Degeneration/pathology , Phenylketonurias/complications
14.
Int J Dev Neurosci ; 28(2): 127-32, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20100562

ABSTRACT

Disorders of propionate metabolism are autosomal recessive diseases clinically characterized by acute metabolic crises in the neonatal period and long-term neurological deficits whose pathophysiology is not completely established. There are increasing evidences demonstrating antioxidant properties for L-carnitine, which is used in the treatment of propionic and methylmalonic acidemias to increase the excretion of organic acids accumulated in tissues and biological fluids of the affected patients. In this work we aimed to evaluate lipid (malondialdehyde content) and protein (carbonyl formation and sulfhydryl oxidation) oxidative damage in plasma from patients with propionic and methylmalonic acidemias at the moment of diagnosis and during treatment with L-carnitine. We also correlated the parameters of oxidative damage with plasma total, free and esterified L-carnitine levels. We found a significant increase of malondialdehyde and carbonyl groups, as well as a reduction of sulfhydryl groups in plasma of these patients at diagnosis compared to controls. Furthermore, patients under treatment presented a marked reduction of the content of protein carbonyl groups, similar to controls, and malondialdehyde content in relation to patients at diagnosis. In addition, plasma total and free L-carnitine concentrations were negatively correlated with malondialdehyde levels. Taken together, the present data indicate that treatment significantly reduces oxidative damage in patients affected by disorders of propionate metabolism and that l-carnitine supplementation may be involved in this protection.


Subject(s)
Amino Acid Metabolism, Inborn Errors/blood , Amino Acid Metabolism, Inborn Errors/drug therapy , Blood Proteins/analysis , Carnitine/administration & dosage , Carnitine/blood , Lipids/blood , Propionates/metabolism , Child, Preschool , Dietary Supplements , Female , Humans , Infant , Infant, Newborn , Male , Oxidative Stress/drug effects , Vitamin B Complex/administration & dosage , Vitamin B Complex/blood
15.
Mutat Res ; 679(1-2): 13-6, 2009.
Article in English | MEDLINE | ID: mdl-19665577

ABSTRACT

Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism, biochemically characterized by the accumulation of Phe and its metabolites in blood and tissues of affected patients. Treatment for PKU consists of a protein restricted diet supplemented with a mixture containing essential amino acids (other than Phe) and micronutrients. In recent years several authors have studied the pathomechanisms of the disease and demonstrated the existence of lipid and protein oxidative damage in PKU patients. In this work we investigated the in vivo and in vitro effects of Phe on DNA damage determined by the alkaline comet assay using silver staining and visual scoring. We found a dose-dependent effect of Phe on DNA damage in leukocytes from normal individuals incubated with different concentrations of Phe. Additionally, by analyzing blood leukocytes from two groups of treated PKU patients based on their blood Phe levels, we verified that the DNA damage index was significantly higher in PKU patients with high Phe blood levels (DI = 68.2 +/- 12.3), compared to well-treated patients and the control group (healthy individuals). Furthermore, well-treated PKU patients had greater DNA damage (DI = 44.9 +/- 7.6) relatively to controls (DI = 12.7 +/- 4.1). Our present in vitro and in vivo findings indicate that DNA damage occurs in peripheral blood from PKU patients and is associated to Phe blood levels.


Subject(s)
DNA Damage , Phenylalanine/blood , Phenylalanine/pharmacology , Phenylketonurias/blood , Child, Preschool , Comet Assay , DNA Damage/drug effects , Dietary Supplements , Humans , Infant , Leukocytes/metabolism , Oxidative Stress
16.
Cell Mol Neurobiol ; 29(2): 211-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18814025

ABSTRACT

AIMS: L-carnitine exerts an important role by facilitating the mitochondrial transport of fatty acids, but is also a scavenger of free radicals, protecting cells from oxidative damage. Phenylketonuria (PKU), an inborn error of phenylalanine (Phe) metabolism, is currently treated with a special diet consisting of severe restriction of protein-enriched foods, therefore potentially leading to L-carnitine depletion. The aim of this study was to determine L-carnitine levels and oxidative stress parameters in blood of two groups of PKU patients, with good and poor adherence to treatment. METHODS: Treatment of patients consisted of a low protein diet supplemented with a synthetic amino acids formula not containing Phe, L-carnitine, and selenium. L-carnitine concentrations and the oxidative stress parameters thiobarbituric acid reactive species (TBARS) and total antioxidant reactivity (TAR) were measured in blood of the two groups of treated PKU patients and controls. RESULTS: We verified a significant decrease of serum L-carnitine levels in patients who strictly adhered to the diet, as compared to controls and patients who did not comply with the diet. Furthermore, TBARS measurement was significantly increased and TAR was significantly reduced in both groups of phenylketonuric patients relatively to controls. We also found a significant negative correlation between TBARS and L-carnitine levels and a significant positive correlation between TAR and L-carnitine levels in well-treated PKU patients. CONCLUSIONS: Our results suggest that L-carnitine should be measured in plasma of treated PKU patients, and when a decrease of this endogenous component is detected in plasma, supplementation should be considered as an adjuvant therapy.


Subject(s)
Carnitine/blood , Carnitine/deficiency , Oxidative Stress/physiology , Phenylketonurias/blood , Adolescent , Carnitine/analysis , Child , Diet, Protein-Restricted , Dietary Supplements/standards , Down-Regulation/physiology , Female , Humans , Male , Phenylketonurias/diet therapy , Phenylketonurias/physiopathology , Thiobarbituric Acid Reactive Substances/analysis , Thiobarbituric Acid Reactive Substances/metabolism
17.
Int J Dev Neurosci ; 25(5): 335-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17574789

ABSTRACT

Maple syrup urine disease (MSUD) is an inherited disorder caused by a deficiency of the branched-chain alpha-keto acid dehydrogenase complex activity. In the present study we evaluated selenium levels in plasma from MSUD patients at diagnosis and under treatment and the activities of glutathione peroxidase, catalase and superoxide dismutase in erythrocytes from treated patients. We verified that MSUD patients present a significant selenium deficiency at diagnosis, which becomes more pronounced during treatment, as well as a decrease of erythrocyte glutathione peroxidase activity during treatment. In contrast, erythrocyte catalase and superoxide dismutase activities were not altered in these patients. Our present results suggest that the reduction of an important antioxidant enzyme activity may be partially involved in the pathomechanisms of this disorder and that plasma selenium levels must be corrected through dietary supplementation in MSUD patients.


Subject(s)
Erythrocytes/enzymology , Glutathione Peroxidase/blood , Maple Syrup Urine Disease/blood , Selenium/blood , Catalase/blood , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Isoleucine/blood , Leucine/blood , Male , Maple Syrup Urine Disease/enzymology , Superoxide Dismutase/blood , Valine/blood
18.
J Neurol Sci ; 247(2): 157-64, 2006 Sep 25.
Article in English | MEDLINE | ID: mdl-16750542

ABSTRACT

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)), in tissues and biological fluids. Although patients affected by this disorder predominantly present central and peripheral demyelination as well as adrenal insufficiency, the mechanisms underlying the brain damage in X-ALD are poorly known. The current treatment of X-ALD with glyceroltrioleate (C(18:1))/glyceroltrierucate (C(22:1)) (Lorenzo's oil, LO) combined with a VLCFA-poor diet normalizes VLCFA concentrations, but the neurological symptoms persist or even progress in symptomatic patients. Considering that free radical generation is involved in various neurodegenerative disorders and that in a previous study we showed evidence that oxidative stress is probably involved in the pathophysiology of X-ALD symptomatic patients, in the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid reactive species (TBA-RS) and total antioxidant reactivity (TAR) in plasma, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes from symptomatic and asymptomatic X-ALD patients and verified whether LO treatment and a VLCFA restricted diet could change these parameters. We observed a significant increase of plasma TBA-RS in symptomatic and asymptomatic X-ALD patients, reflecting induction of lipid peroxidation even before the disease was manifested. In addition, LO treatment did not alter this profile. Furthermore, plasma TAR measurement of X-ALD patients was not different from that of controls. Similarly, the antioxidant enzyme activities CAT, SOD and GPx were not altered in erythrocyte from X-ALD patients as compared to controls. We also examined the in vitro effects of hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)) alone or combined with oleic (C(18:1))/erucic (C(22:1)) acids on various oxidative stress parameters in cerebral cortex of young rats, namely chemiluminescence, TBA-RS, TAR, CAT, SOD and GPx in order to investigate whether those fatty acids were able to induce oxidative stress. We found that there was a significant increase of TBARS and of chemiluminescence in rat cerebral cortex exposed to C(26:0)/C(24:0), and that the addition of C(18:1)and C(22:1) to the assays did not prevent this effect. Furthermore, TAR measurement was not altered by C(26:0) and C(24:0) acids in rat cerebral cortex. Taken together, our results indicate that lipid peroxidation occurs in X-ALD and that LO treatment does not attenuate or prevent free radical generation in these patients. Therefore, it may be presumed that antioxidants should be considered as an adjuvant therapy for X-ALD patients.


Subject(s)
Adrenoleukodystrophy/physiopathology , Erucic Acids/pharmacology , Oxidative Stress/drug effects , Triolein/pharmacology , Adrenoleukodystrophy/drug therapy , Adrenoleukodystrophy/metabolism , Analysis of Variance , Animals , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Child , Drug Combinations , Fatty Acids, Unsaturated/metabolism , Humans , Lipid Peroxidation/drug effects , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/analysis
SELECTION OF CITATIONS
SEARCH DETAIL