Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Plants (Basel) ; 13(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276759

ABSTRACT

Pterocarpus anglonesis DC is an indigenous medicinal plant belonging to the Pterocarpus genus of the Fabaceae family. It is used to treat stomach problems, headaches, mouth ulcers, malaria, blackwater fever, gonorrhea, ringworm, diarrhea, heavy menstruation, and breast milk stimulation. Column chromatography of the stem bark extracts resulted in the isolation of eight compounds, which included friedelan-3-one (1), 3α-hydroxyfriedel-2-one (2), 3-hydroxyfriedel-3-en-2-one (3), lup-20(29)-en-3-ol (4), Stigmasta-5-22-dien-3-ol (5), 4-O-methylangolensis (6), (3ß)-3-acetoxyolean-12-en-28-oic acid (7), and tetradecyl (E)-ferulate (8). The structures were established based on NMR, IR, and MS spectroscopic analyses. Triple-negative breast cancer (HCC70), hormone receptor-positive breast cancer (MCF-7), and non-cancerous mammary epithelial cell lines (MCF-12A) were used to test the compounds' cytotoxicity. Overall, the compounds showed either no toxicity or very low toxicity to all three cell lines tested, except for the moderate toxicity displayed by lupeol (4) towards the non-cancerous MCF-12A cells, with an IC50 value of 36.60 µM. Compound (3ß)-3-acetoxyolean-12-en-28-oic acid (7) was more toxic towards hormone-responsive (MCF-7) breast cancer cells than either triple-negative breast cancer (HCC70) or non-cancerous breast epithelial (MCF-12A) cells (IC50 values of 83.06 vs. 146.80 and 143.00 µM, respectively).

2.
Biomolecules ; 13(12)2023 12 12.
Article in English | MEDLINE | ID: mdl-38136652

ABSTRACT

Cordyline species have a long history in traditional medicine as a basis of treatment for various ailments such as a bloody cough, dysentery, and a high fever. There are about 26 accepted species names in this genus distributed worldwide, including C. fruticosa, C. autralis, C. stricta, C. cannifolia, and C. dracaenosides. This work presents a comprehensive review of the traditional uses of plants of the genus Cordylie and their chemical constituents and biological activities. A bibliographic search was conducted to identify available information on ethnobotany, ethnopharmacology, chemical composition, and biological activities. A total of 98 isolated compounds potentially responsible for most of the traditional medicinal applications have been reported from eight species of Cordyline and are characterised as flavonoid, spirostane, furostane, and cholestane glycosides. Some of these pure compounds, as well as extracts from some species of Cordyline, have exhibited noteworthy anti-oxidant, antiproliferative, antimicrobial, and hypolipidemic activities. Although many of these species have not yet been investigated phytochemically or pharmacologically, they remain a potential source of new bioactive compounds.


Subject(s)
Cordyline , Ethnobotany , Phytotherapy , Phytochemicals/chemistry , Ethnopharmacology , Plant Extracts/chemistry
3.
Nat Prod Bioprospect ; 13(1): 52, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996570

ABSTRACT

Plants of the genus Cordia (Boraginaceae family) are widely distributed in the tropical regions of America, Africa, and Asia. They are extensively used in folk medicine due to their rich medicinal properties. This review presents a comprehensive analysis of the isolation, structure, biogenesis, and biological properties of quinones from Cordia species reported from 1972 to 2023. Meroterpenoids were identified as the major quinones in most Cordia species and are reported as a chemotaxonomic markers of the Cordia. In addition to this property, quinones are reported to display a wider and broader spectrum of activities, are efficient scaffold in biological activity, compared to other classes of compounds reported in Cordia, hence our focus on the study of quinones reported from Cordia species. About 70 types of quinones have been isolated, while others have been identified by phytochemical screening or gas chromatography. Although the biosynthesis of quinones from Cordia species is not yet fully understood, previous reports suggest that they may be derived from geranyl pyrophosphate and an aromatic precursor unit, followed by oxidative cyclization of the allylic methyl group. Studies have demonstrated that quinones from this genus exhibit antifungal, larvicidal, antileishmanial, anti-inflammatory, antibiofilm, antimycobacterial, antioxidant, antimalarial, neuroinhibitory, and hemolytic activities. In addition, they have been shown to exhibit remarkable cytotoxic effects against several cancer cell lines which is likely related to their ability to inhibit electron transport as well as oxidative phosphorylation, and generate reactive oxygen species (ROS). Their biological activities indicate potential utility in the development of new drugs, especially as active components in drug-carrier systems, against a broad spectrum of pathogens and ailments.

4.
Heliyon ; 9(11): e21841, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027816

ABSTRACT

Ethnopharmacological relevance: Canarium schweinfurthii, also called ''Elemierd'Afrique'', is used in Cameroonian folk medicine (bark decoction) to treat patients suffering from hypertension.Aim of the study: This study aimed at evaluating the antihypertensive activities of the stem bark of Canarium schweinfurthii and identifying potential compounds present in its extract that may support or oppose its ethnomedicinial use. Materials and methods: Stem bark extract of Canarium schweinfurthii was prepared by maceration using 70 % ethanol followed by redissolution in methanol and hyphenated. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) analysis for the detection and characterisation of secondary metabolites. Antihypertensive effects were assessed in Wistar rats after induction of hypertension with sodium chloride (NaCl) 18 % at a dose of 0.01mL/gbody weight once a day for four weeks.Hemodynamic parameters were measured weekly by anon-invasive method using the CODA system. Results: The ethanolic bark extract of C. schweinfurthii significantly inhibited the increase of blood pressure with a maximum of 23.18 % (systolic pressure, p < 0.0001), 24.77 % (diastolic pressure, p < 0.001) and 22.95 % (mean pressure, p < 0.0001) at a dose of 200 mg/kgbody weight at the 4th week, compared to agroup of Wistar rats that received only NaCl (negative control). Similarly, the extract significantly inhibited the increase in heart rate by 18.84 % (p < 0.001) at 200 mg/kgbody weight at week four. Hematological parameters did not differ significantly between the extract-treated and control groups. The UPLC-MS/MS spectrometric analysis provided evidence for the presence of several C30 terpenoids containing three or five oxygen atoms and exhibiting pentacyclic triterpenoid structures, as well as C29 terpenoids and related compounds containing nitrogen in addition to oxygen, using spectral matching, and in silico molecular formula and structure prediction. Additionally, two features were annotated with high-confidence as lignans, structurally closely related to hinokinin and dehydrocubebin through MS/MS-based in silico structure prediction using CSI: Finger ID in SIRIUS5. The lignans have been previously reported from stem bark of plants belonging to the Burseraceae family. Conclusion: The ethanolic stem bark extract of C. schweinfurthii demonstrated antihypertensive properties on the tested Wistar rats. These results support the ethnopharmacological use of C. schweinfurthii concoctions for the treatment of hypertension and suggest a protective effect against salt damage, hypothetically by the up regulation of antioxidative enzymes and/or lipids, mitigatings membrane peroxidation.

5.
Molecules ; 28(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37894704

ABSTRACT

Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21ß-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21ß-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 µg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 µg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 µg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 µg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21ß-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21ß-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.


Subject(s)
Antimalarials , Antiprotozoal Agents , Limonins , Malaria, Falciparum , Meliaceae , Humans , Antimalarials/chemistry , Limonins/pharmacology , Limonins/analysis , Plant Extracts/chemistry , Sulfadoxine/analysis , Plant Bark/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/analysis , Chloroquine , Meliaceae/chemistry , Plasmodium falciparum
6.
Magn Reson Chem ; 61(8): 497-503, 2023 08.
Article in English | MEDLINE | ID: mdl-37340817

ABSTRACT

From the n-butanol soluble fraction of the ethanol extract of the medicinal plant Olax subscorpioidea, a previously unreported rotameric biflavonoid glycoside constituted of 4'-O-methylgallocatechin-(4α → 8)-4'-O-methylgallocatechin as aglycone named olasubscorpioside C (1) along with the known 4'-O-methylgallocatechin (2) were isolated. Their structures were determined on the basis of spectrometric and spectroscopic techniques including HRFABMS, 1 H and 13 C NMR, DEPT 135o , HSQC, HMBC, ROESY, and CD followed by comparison with the reported data.


Subject(s)
Biflavonoids , Glycosides , Glycosides/chemistry , Plant Extracts/chemistry , Magnetic Resonance Spectroscopy , Ethanol , Molecular Structure
7.
Pharmaceuticals (Basel) ; 16(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242558

ABSTRACT

Dacryodes Vahl. species, belonging to the Burseraceae family, are widely used in traditional medicine in tropical regions to treat a range of ailments including malaria, wounds, tonsillitis, and ringworms. This review discusses the distribution, ethnobotanical uses, phytochemistry, and bioactivities of Dacryodes species. The intent is to spur future research into isolating and identifying key active principles, secondary metabolites, and crude extracts, and evaluating their pharmacological and toxicological effects, as well as the mechanism of actions to understand their medicinal benefits. A systematic review of scientific electronic databases from 1963 to 2022 including Scifinder, Scopus, Pubmed, Springer Link, ResearchGate, Ethnobotany Research and Applications, Google Scholar, and ScienceDirect was conducted with a focus on Dacryodes edulis (G.Don) H.J. Lam and Dacryodes rostrata (Blume) H.J. Lam. Pharmacological data revealed that D. edulis isolates contain secondary metabolites and other phytochemical groups belonging to the terpenoids class with anti-microbial, anticancer, antidiabetic, antiinflammatory and hepatoprotective activities, highlighting its pharmacological potential in the therapy or management of diverse cancers, cardiovascular, and neurological diseases. Thus, phytochemicals and standardized extracts from D. edulis could offer safer and cost-effective chemopreventive and chemotherapeutic health benefits/regimen, or as alternative therapeutic remedy for several human diseases. Nevertheless, the therapeutic potential of most of the plants in the genus have not been exhaustively explored with regard to phytochemistry and pharmacology, but mostly complementary approaches lacking rigorous, scientific research-based knowledge. Therefore, the therapeutic potentials of the Dacryodes genus remain largely untapped, and comprehensive research is necessary to fully harness their medicinal properties.

8.
Molecules ; 28(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36985700

ABSTRACT

Antrocaryon klaineanum is traditionally used for the treatment of back pain, malaria, female sterility, chlamydiae infections, liver diseases, wounds, and hemorrhoid. This work aimed at investigating the bioactive compounds with antileishmanial and antiplasmodial activities from A. klaineanum. An unreported glucocerebroside antroklaicerebroside (1) together with five known compounds (2-6) were isolated from the root barks of Antrocaryon klaineanum using chromatographic techniques. The NMR, MS, and IR spectroscopic data in association with previous literature were used for the characterization of all the isolated compounds. Compounds 1-4 are reported for the first time from A. klaineanum. The methanol crude extract (AK-MeOH), the n-hexane fraction (AK-Hex), the dichloromethane fraction (AK-DCM), the ethyl acetate fraction (AK-EtOAc), and compounds 1-6 were all evaluated for their antiparasitic effects against Plasmodium falciparum strains susceptible to chloroquine (3D7), resistant to chloroquine (Dd2), and promastigotes of Leishmania donovani (MHOM/SD/62/1S). The AK-Hex, AK-EtOAc, AK-MeOH, and compound 2 were strongly active against Dd2 strain with IC50 ranging from 2.78 ± 0.06 to 9.30 ± 0.29 µg/mL. Particularly, AK-MeOH was the most active-more than the reference drugs used-with an IC50 of 2.78 ± 0.06 µg/mL. The AK-EtOAc as well as all the tested compounds showed strong antileishmanial activities with IC50 ranging from 4.80 ± 0.13 to 9.14 ± 0.96 µg/mL.


Subject(s)
Anacardiaceae , Antimalarials , Antiprotozoal Agents , Antimalarials/pharmacology , Antimalarials/chemistry , Anacardiaceae/chemistry , Plant Extracts/chemistry , Antiprotozoal Agents/pharmacology , Chloroquine , Plasmodium falciparum
9.
J Ethnopharmacol ; 301: 115170, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-35358625

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Monsonia angustifolia is traditionally used to treat anthrax, heartburn, diarrhea, eye infections and hemorrhoids. Dodonaea angustifolia is frequently used as a treatment for dental pain, microbial infections and jungle fever. The two plant species were selected due to the presence of secondary metabolites such as coumarins, flavonoids, terpenoids, saponins and polyphenolics from the crude extracts, which exhibit pharmacological significance. The pure isolated compounds from the crude extracts are known for their diverse structures and interesting pharmacophores. AIM: To isolate and identify antibacterial and antifungal chemical constituents from Monsonia angustifolia and Dodonaea angustifolia plant extracts and evaluate the cytotoxicity of pure compounds from the crude extracts. MATERIALS AND METHODS: Extractives from M. angustifolia and D. angustifolia plants were isolated using chromatographic techniques and structures were elucidated based on NMR, IR and MS spectroscopic techniques. A microplate serial dilution method was used to evaluate the antibacterial activity of extracts and pure compounds against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and antifungal activity against Candida albicans and Cryptococcus neoformans. The cytotoxicity was determined using the 3-(4, 5-dimethylthiazol)-2, 5-diphenyl tetrazolium bromide (MTT) assay. RESULTS: The dichloromethane, ethyl acetate and methanol crude extracts from the plants exhibited significant inhibition of microbial growth. The phytochemical investigation of these active crude extracts led to the isolation of five pure active compounds, 5-methoxyjusticidin A (1), cis-phytyl diterpenoidal fatty acid ester (2), stigmasterol (3), ß-sitosterol (4) and 5-hydroxy-7,4'-dimethoxyflavone (5). Stigmasterol (3) showed good antifungal activity against Cryptococcus neoformans with a minimum inhibition concentration (MIC) of 25 µg/mL and Candida albicans (MIC = 50 µg/mL). CONCLUSION: Compounds (1-5) isolated from Monsonia angustifolia and Dodonaea angustifolia showed antibacterial and antifungal activities and were non-toxic against Madin-Darby canine kidney (MDCK) cells and VERO monkey kidney (VERO) cells.


Subject(s)
Geraniaceae , Sapindaceae , Antifungal Agents/toxicity , Antifungal Agents/chemistry , Stigmasterol , Microbial Sensitivity Tests , Plant Extracts/toxicity , Plant Extracts/chemistry , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/chemistry
10.
Nat Prod Res ; 37(10): 1641-1650, 2023 May.
Article in English | MEDLINE | ID: mdl-35921518

ABSTRACT

A previously unreported gallocatechin glycoside, (2 R,3S) 4'-O-methyl-gallocatechin-3-O-α-ʟ-rhamnopyranoside (1) and an unseparable mixture of two previously undescribed dihydromyricetin glycosides, (2 R,3R) 4'-O-methyl-dihydromyricetin-3-O-α-ʟ-rhamnopyranoside (2a) and (2 R,3S) 4'-O-methyl-dihydromyricetin-3-O-α-ʟ-rhamnopyranoside (2 b) along with three known compounds were isolated from the n-butanol soluble fraction of the stem bark of Olax subscorpioidea Oliv. Their structures were elucidated by detailed spectroscopic analyses, including 1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC, NOESY, HR-ESI-MS and chemical methods. The crude ethanol extract, the fractions, and some of the isolated compounds were screened for their antioxidant and antibacterial activities. They showed significant antioxidant activities with EC50 ranging from 6.29 to 18.19 µg/mL in 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and EC50 ranging from 85.77 to 86.39 mmol FeSO4/g in ferric reducing antioxidant power (FRAP) methods compared with 2.29 µg/mL and 3.52 mmol FeSO4/g for the positive control (ʟ-ascorbic acid). Nevertheless, no inhibition was observed against the tested bacterial strains at a MIC less than 256 µg/mL.


Subject(s)
Antioxidants , Flavonoids , Flavonoids/chemistry , Antioxidants/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Glycosides/chemistry
11.
Pharmaceutics ; 14(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36365255

ABSTRACT

In the quest to effectively diagnose and treat the diseases that afflict mankind, the development of a tool capable of simultaneous detection and treatment would provide a significant cornerstone for the survival and control of these diseases. Theranostics denotes a portmanteau of therapeutics and diagnostics which simultaneously detect and treat ailments. Research advances have initiated the advent of theranostics in modern medicine. Overall, theranostics are drug delivery systems with molecular or targeted imaging agents integrated into their structure. The application of theranostics is rising exponentially due to the urgent need for treatments that can be utilized for diagnostic imaging as an aid in precision and personalised medicine. Subsequently, the emergence of nanobiotechnology and the green synthesis of metallic nanoparticles (MNPs) has provided one such avenue for nanoscale development and research. Of interest is the drastic rise in the use of medicinal plants in the synthesis of MNPs which have been reported to be potentially effective in the diagnosis and treatment of diseases. At present, medicinal plant-derived MNPs have been cited to have broad pharmacological applications and have been studied for their potential use in the treatment and management of cancer, malaria, microbial and cardiovascular diseases. The subject of this article regards the role of medicinal plants in the synthesis of MNPs and the potential role of MNPs in the field of theranostics.

12.
BMC Complement Med Ther ; 22(1): 90, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35337309

ABSTRACT

BACKGROUND: Euphorbia grandicornis is widely utilized in traditional medicine for the treatment of microbial infections including sexually transmitted diseases such as syphilis, gonorrhoea and for healing of wounds. OBJECTIVE: The aim of this work was to isolate and evaluate the antibacterial and anticancer activities of Euphorbia grandicornis chemical constituents. METHODS: Chemical constituents were isolated and identified using various spectroscopic techniques such as IR, MS, and NMR. The single point growth inhibitory potential of the compounds was determined using a 96-well plate based assay. RESULTS: The CH2Cl2 crude extracts exhibited potent antibacterial activity against Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 6538 with percentage growth of 94.90 ± 4.24 and 29.47 ± 4.89 respectively. Hence, the CH2Cl2 crude extract was further subjected to column chromatography which resulted in the isolation of methyl 2,5-dihydroxybenzoate (1), n-octyl benzoate (2), friedelanol (3), and germanicol (4) and identification of compounds 12-24 for the first time in the species based on the LC-MS/MS spectroscopic data. The purified compounds (1-4), and previously reported compounds (5-11) were evaluated for antibacterial activities against S. aureus and E. coli, as well as the cytotoxicity effects against HeLa cells. Of the purified compounds, methyl 2,5-dihydroxybenzoate (1), was the most active against E.coli and S. aureus with a percentage growth of 19.12 ± 0.65 and 23.32 ± 0.23 respectively. ß-amyrin (6), and ß-sitosterol (8), were active against S. aureus with percentage growth of 27.17 ± 0.07, and 47.79 ± 2.99 respectively. CONCLUSION: The results obtained from this study indicate that E. grandicornis, is a rich source of chemical constituents that may provide new lead compounds for the development of antibacterial agents.


Subject(s)
Euphorbia , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chromatography, Liquid , Escherichia coli , HeLa Cells , Humans , Microbial Sensitivity Tests , Plant Extracts/chemistry , Staphylococcus aureus , Tandem Mass Spectrometry
13.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443641

ABSTRACT

Euphorbia species have a rich history of ethnomedicinal use and ethnopharmacological applications in drug discovery. This is due to the presence of a wide range of diterpenes exhibiting great structural diversity and pharmacological activities. As a result, Euphorbia diterpenes have remained the focus of drug discovery investigations from natural products. The current review documents over 350 diterpenes, isolated from Euphorbia species, their structures, classification, biosynthetic pathways, and their structure-activity relationships for the period covering 2013-2020. Among the isolated diterpenes, over 20 skeletal structures were identified. Lathyrane, jatrophane, ingenane, ingenol, and ingol were identified as the major diterpenes in most Euphorbia species. Most of the isolated diterpenes were evaluated for their cytotoxicity activities, multidrug resistance abilities, and inhibitory activities in vitro, and reported good activities with significant half-inhibitory concentration (IC50) values ranging from 10-50 µM. The lathyranes, isopimaranes, and jatrophanes diterpenes were further found to show potent inhibition of P-glycoprotein, which is known to confer drug resistance abilities in cells leading to decreased cytotoxic effects. Structure-activity relationship (SAR) studies revealed the significance of a free hydroxyl group at position C-3 in enhancing the anticancer and anti-inflammatory activities and the negative effect it has in position C-2. Esterification of this functionality, in selected diterpenes, was found to enhance these activities. Thus, Euphorbia diterpenes offer a valuable source of lead compounds that could be investigated further as potential candidates for drug discovery.


Subject(s)
Diterpenes/chemistry , Diterpenes/pharmacology , Euphorbia/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Structure-Activity Relationship
14.
Molecules ; 26(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923374

ABSTRACT

Species within the genus Rhoicissus (Vitaceae) are commonly used in South African traditional medicine. The current review discusses the occurrence, distribution, traditional uses, phytochemistry, and pharmacological properties of Rhoicissus species covering the period 1981-2020. The data reported were systematically collected, read, and analysed from scientific electronic databases including Scopus, Scifinder, Pubmed, and Google Scholar. Reported evidence indicates that species in this genus are used for the treatment of gastrointestinal complaints, sexually transmitted infections (STIs), and infertility, as well as to tone the uterus during pregnancy and to facilitate delivery. Pharmacological studies have further shown that members of the Rhoicissus genus display antidiabetic, uterotonic, ascaricidal, hepatoprotective, antioxidant, antimicrobial, anticancer, and anti-inflammatory properties. They are linked to the presence of bioactive compounds isolated from the genus. Hence, Rhoicissus species can potentially be an alternative therapeutic strategy to treat diseases and develop safer and more potent drugs to combat diseases. Plant species of this genus have valuable medicinal benefits due to their significant pharmacological potential. However, scientific investigation and information of the therapeutic potential of Rhoicissus remain limited as most of the species in the genus have not been fully exploited. Therefore, there is a need for further investigations to exploit the therapeutic potential of the genus Rhoicissus. Future studies should evaluate the phytochemical, pharmacological, and toxicological activities, as well as the mode of action, of Rhoicissus crude extracts and secondary compounds isolated from the species.


Subject(s)
Phytochemicals/chemistry , Vitaceae/chemistry , Vitaceae/metabolism , Animals , Antioxidants/chemistry , Humans , Medicine, Traditional/methods , Plant Extracts/chemistry
15.
Nat Prod Res ; 35(8): 1313-1322, 2021 Apr.
Article in English | MEDLINE | ID: mdl-31385525

ABSTRACT

Terminaliamide (1), a new ceramide was isolated from the roots of Terminalia mantaly H. Perrier (Combretaceae) along with 4 known compounds (2-5). The structures of the compounds were elucidated using 1D and 2D NMR spectroscopy analysis and mass spectrometry. Compound 1 exhibited moderated antibacterial activity towards Staphylococcus aureus with MIC value of 62.5 µg/mL. The crude MeOH extract (TMr) highly reduced Plasmodium falciparum growth with an IC50 value of 10.11 µg/mL, while hexane fraction (F1) highly reduced Trypanosoma brucei brucei growth with an IC50 value of 5.60 µg/mL. All tested samples presented little or no in vitro cytotoxicity on HeLa cell line. The present work confirms that T. mantaly is medicinally important and may be used effectively as an antimicrobial, an antiplasmodial and an antitrypanosomial with promising therapeutic index.


Subject(s)
Ceramides/isolation & purification , Ceramides/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Roots/chemistry , Terminalia/chemistry , Anti-Infective Agents/pharmacology , Antimalarials/chemistry , Antimalarials/isolation & purification , Antimalarials/pharmacology , Bacteria/drug effects , Carbon-13 Magnetic Resonance Spectroscopy , Cell Survival/drug effects , Ceramides/chemistry , HeLa Cells , Humans , Microbial Sensitivity Tests , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Proton Magnetic Resonance Spectroscopy , Trypanosoma brucei brucei/drug effects
16.
J Ethnopharmacol ; 255: 112716, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32151754

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The dicotyledonous plant Piptadeniastrum africanum (hook.f.) Brennan (Fabaceae) is used in traditional medicine to treat various human complaints including bronchitis, coughing, urino-genital ailments, meningitis, abdominal pain, treatment of wounds, malaria and gastrointestinal ailments, and is used as a purgative and worm expeller. AIM OF THE STUDY: The present study describes the phytochemical investigation and the determination of the antimicrobial, antiplasmodial and antitrypanosomal activities of crude extract, fractions and compounds extracted from Piptadeniastrum africanum roots. MATERIALS AND METHODS: Isolated compounds were obtained using several chromatographic techniques. The structures of all compounds were determined by comprehensive spectroscopic analyses (1D and 2D NMR) and by comparing their NMR data with those found in literature. In vitro antimicrobial activity of samples was evaluated using the microdilution method on bacterial (Escherichia coli, Proteus mirabilis, Staphylococcus aureus) and fungal (Candida krusei) strains, while in vitro cell-growth inhibition activities were assessed against two parasites (Trypanosoma brucei brucei and Plasmodium falciparum strain 3D7). The cytotoxicity properties of samples were assayed against HeLa human cervical carcinoma. RESULTS: Five compounds were isolated and identified as: tricosanol 1, 5α-stigmasta-7,22-dien-3-ß-ol 2, betulinic acid 3, oleanolic acid 4 and piptadenamide 5. This is the first report of the isolation of these five compounds from the roots of P. africanum. The (Hex:EtOAc 50:50) fraction exhibited moderate antibacterial activity against P. mirabilis (MIC 250 µg/mL), while the other fractions and isolated compounds had weak antimicrobial activities. Only the EtOAc fraction presented a moderate antimalarial activity with an IC50 of 16.5 µg/mL. The MeOH crude extract and three fractions (Hexane, Hexane-EtOAc 25% and EtOAc-MeOH 25%) exhibited significant trypanocidal activity with IC50 values of 3.0, 37.5, 3.8 and 9.5 µg/mL, respectively. CONCLUSION: These results demonstrated a scientific rational of the traditional uses of P. africanum and indicate that this plant should be further investigated to identify some of the chemical components that exhibited the activities reported in this study and therefore may constitute new lead candidates in parasiticidal drug discovery.


Subject(s)
Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Fabaceae/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Roots/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/toxicity , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Antimalarials/isolation & purification , Antimalarials/pharmacology , Bacteria/drug effects , Bacteria/growth & development , HeLa Cells , Humans , Phytochemicals/toxicity , Pichia/drug effects , Pichia/growth & development , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Trypanocidal Agents/isolation & purification , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/growth & development
17.
Molecules ; 24(17)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484419

ABSTRACT

Chemical investigation of Cordia millenii, Baker resulted in the isolation of a new depsidone, cordidepsine (1), along with twelve known compounds including cyclooctasulfur (2), lup-20(29)-en-3-triacontanoate (3), 1-(26-hydroxyhexacosanoyl)glycerol (4), glyceryl-1-hexacosanoate (5) betulinic acid (6), lupenone (7), ß-amyrone (8), lupeol (9), ß-amyrin (10), allantoin (11), 2'-(4-hydroxyphenyl)ethylpropanoate (12) and stigmasterol glycoside (13). Hemi-synthetic reactions were carried out on two isolated compounds (5 and 6) to afford two new derivatives, that is, cordicerol A (14) and cordicerol B (15), respectively. The chemical structures of all the compounds were established based on analysis and interpretation of spectroscopic data such as electron ionization mass spectrometry (EI-MS), high resolution electrospray ionization mass spectrometry (HR-ESI-MS), fast atom bombardment mass spectrometry (FAB-MS), one dimension and two dimension nuclear magnetic resonance (1D and 2D-NMR) spectral data as well as X-ray crystallography (XRC). Lupeol ester derivatives [Lup-20(29)-en-3-triacontanoate (3)], monoglycerol derivatives [1-(26-hydroxyhexacosanoyl)glycerol (4) and glyceryl-1 hexacosanoate (5)] were isolated for the first time from Cordia genus while sulfur allotrope [cyclooctasulfur (2)] was isolated for the first time from plant origin. Biological assays cordidepsine (1) exhibited significant anti-HIV integrase activity with IC50 = 4.65 µM; EtOAc extract of stem barks, EtOAc fraction of roots and leaves were not toxic against 3T3 cells.


Subject(s)
Anti-HIV Agents/chemistry , Cordia/chemistry , Depsides/chemistry , Lactones/chemistry , Plant Extracts/chemistry , Cell Survival/drug effects , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Mass Spectrometry
18.
J Ethnopharmacol ; 238: 111851, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-30978458

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Anthocleista vogelii Planch (Loganiaceae) is used in African Traditional Medicine for the treatment of pain and inflammatory disorders as well as sleeping sickness. AIM OF THE STUDY: To determine the in vivo anti-inflammatory and in vitro anti-trypanosomal activities of the extracts of A. vogelii stem bark and identify the phytochemical classes of the fractions responsible for the activities. MATERIALS AND METHODS: The in vivo anti-inflammatory activity of the extracts was evaluated using the egg albumin-induced rat paw oedema model while the in vitro anti-trypanosomal activity was assessed on Trypanosoma brucei brucei. The in vitro cytotoxicity was assessed on HeLa (human cervix adenocarcinoma) cell line. RESULTS: The methanolic extract of A. vogelii stem bark, with 11.2% yield, gave LD50 > 5000 mg/kg. The n-hexane fraction of the extract contains steroids, terpenes and fatty acids and yielded non-cytotoxic terpenoidal column fraction with anti-trypanosomal IC50 of 3.0 µg/mL. The ethylacetate fraction at 100 mg/kg dose significantly (p < 0.05) provoked 37.8, 62.5 and 69.7% inhibition of oedema induced by egg-albumin at the second, fourth and sixth hours respectively. CONCLUSION: The study demonstrated that the anti-inflammatory and anti-trypanosomal activities of A. vogelii are probably due to non-cytotoxic terpenoids and validated the traditional use of A. vogelii in the treatment of inflammation and sleeping sickness.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Edema/drug therapy , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/drug effects , Animals , Anti-Inflammatory Agents/chemistry , Cell Survival/drug effects , Female , HeLa Cells , Humans , Lethal Dose 50 , Loganiaceae , Male , Mice , Phytochemicals/analysis , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Plant Bark , Plant Stems , Rats, Wistar , Trypanocidal Agents/chemistry
19.
Sci Rep ; 9(1): 4718, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886338

ABSTRACT

According to the 2018 report of the United Nations Programme on HIV/AIDS (UNAIDS), acquired immune deficiency syndrome (AIDS), a disease caused by the human immunodeficiency virus (HIV), remains a significant public health problem. The non-existence of a cure or effective vaccine for the disease and the associated emergence of resistant viral strains imply an urgent need for the discovery of novel anti-HIV drug candidates. The current study aimed to identify potential anti-retroviral compounds from Alchornea cordifolia. Bioactive compounds were identified using several chromatographic and spectroscopic techniques and subsequently evaluated for cytotoxicity and anti-HIV properties. Molecular modelling studies against HIV-1 integrase (HIV-1 IN) were performed to decipher the mode of action of methylgallate, the most potent compound (IC50 = 3.7 nM) and its analogues from ZINC database. Cytotoxicity assays showed that neither the isolated compounds nor the crude methanolic extract displayed cytotoxicity effects on the HeLa cell line. A strong correlation between the in vitro and in silico results was observed and important HIV-1 IN residues interacting with the different compounds were identified. These current results indicate that methylgallate is the main anti-HIV-1 compound in A. cordifolia stem bark, and could be a potential platform for the development of new HIV-1 IN inhibitors.


Subject(s)
Acquired Immunodeficiency Syndrome/drug therapy , Euphorbiaceae/chemistry , Gallic Acid/analogs & derivatives , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , Acquired Immunodeficiency Syndrome/virology , Drug Evaluation, Preclinical , Gallic Acid/chemistry , Gallic Acid/isolation & purification , Gallic Acid/pharmacology , Gallic Acid/therapeutic use , HIV Integrase/ultrastructure , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/isolation & purification , HIV Integrase Inhibitors/therapeutic use , HIV-1/drug effects , HIV-1/enzymology , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Bark/chemistry , Plant Stems/chemistry , Protein Domains , Recombinant Proteins , Toxicity Tests
20.
Saudi J Biol Sci ; 25(1): 117-122, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29379367

ABSTRACT

The cytotoxic, antiplasmodial, and antitrypanosomal activities of two medicinal plants traditionally used in Cameroon were evaluated. Wood of Ficus elastica Roxb. ex Hornem. aerial roots (Moraceae) and Selaginella vogelii Spring (Selaginellaceae) leaves were collected from two different sites in Cameroon. In vitro cell-growth inhibition activities were assessed on methanol extract of plant materials against Plasmodium falciparum strain 3D7 and Trypanosoma brucei brucei, as well as against HeLa human cervical carcinoma cells. Criteria for activity were an IC50 value < 10 µg/mL. The extract of S. vogelii did not significantly reduce the viability of P. falciparum at a concentration of 25 µg/mL but dramatically affected the trypanosome growth with an IC50 of 2.4 µg/mL. In contrast, at the same concentration, the extract of F. elastica exhibited plasmodiacidal activity (IC50 value of 9.5 µg/mL) and trypanocidal (IC50 value of 0.9 µg/mL) activity. Both extracts presented low cytotoxic effects on HeLa cancer cell line. These results indicate that the selected medicinal plants could be further investigated for identifying compounds that may be responsible for the observed activities and that may represent new leads in parasitical drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL