Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Methods Mol Biol ; 2449: 327-348, 2022.
Article in English | MEDLINE | ID: mdl-35507270

ABSTRACT

In many complex diseases, such as cancers, resistance to monotherapies easily occurs, and longer-term treatment responses often require combinatorial therapies as next-line regimens. However, due to a massive number of possible drug combinations to test, there is a need for systematic and rational approaches to finding safe and effective drug combinations for each individual patient. This protocol describes an ecosystem of computational methods to guide high-throughput combinatorial screening that help experimental researchers to identify optimal drug combinations in terms of synergy, efficacy, and/or selectivity for further preclinical and clinical investigation. The methods are demonstrated in the context of combinatorial screening in primary cells of leukemia patients, where the translational aim is to identify drug combinations that show not only high synergy but also maximal cancer-selectivity. The mechanism-agnostic and cost-effective computational methods are widely applicable to various cancer types, which are amenable to drug testing, as the computational methods take as input only the phenotypic measurements of a subset of drug combinations, without requiring target information or genomic profiles of the patient samples.


Subject(s)
Ecosystem , Neoplasms , Computational Biology/methods , Drug Combinations , Drug Evaluation, Preclinical/methods , Drug Synergism , Humans , Neoplasms/drug therapy
2.
Mol Oncol ; 16(6): 1241-1258, 2022 03.
Article in English | MEDLINE | ID: mdl-35148457

ABSTRACT

The management of multiple myeloma (MM) is challenging: An assortment of available drug combinations adds complexity to treatment selection, and treatment resistance frequently develops. Given the heterogeneous nature of MM, personalized testing tools are required to identify drug sensitivities. To identify drug sensitivities in MM cells, we established a drug testing pipeline to examine ex vivo drug responses. MM cells from 44 patients were screened against 30 clinically relevant single agents and 44 double- and triple-drug combinations. We observed variability in responses across samples. The presence of gain(1q21) was associated with low sensitivity to venetoclax, and decreased ex vivo responses to dexamethasone reflected the drug resistance observed in patients. Less heterogeneity and higher efficacy was detected with many combinations compared to the corresponding single agents. We identified new synergistic effects of melflufen plus panobinostat using low concentrations (0.1-10 nm and 8 nm, respectively). In agreement with clinical studies, clinically approved combinations, such as triple combination of selinexor plus bortezomib plus dexamethasone, acted synergistically, and synergies required low drug concentrations (0.1 nm bortezomib, 10 nm selinexor and 4 nm dexamethasone). In summary, our drug screening provided results within a clinically actionable 5-day time frame and identified synergistic drug efficacies in patient-derived MM cells that may aid future therapy choices.


Subject(s)
Multiple Myeloma , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/pharmacology , Bortezomib/therapeutic use , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Drug Combinations , Drug Evaluation, Preclinical , Drug Resistance , Humans , Multiple Myeloma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL