Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Nat Prod Res ; : 1-15, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38189318

ABSTRACT

Stachys lavandulifolia Vahl known as "mountain tea", is a perennial flowering plant belonging to the Lamiaceae family and is widespread in Iran, Armenia, Azerbaijan, Iraq, Turkey and Turkmenistan. S. lavandulifolia is widely used in traditional medicine for its analgesic, anti-inflammatory and anxiolytic properties. This plant has different chemical compounds classes including terpenoids, iridoids, flavonoids and phenylethanoids that have been isolated from the aerial parts of it. This review covers the plant botany, traditional medicinal uses and chemical composition of S. lavandulifolia, along with its biological and pharmacological activities including clinical trial data. The information of this review article was obtained from different scientific databases such as Google scholar, Science Direct, Hindawi, SID, Scopus, PubMed, and ACS as well as traditional Persian books. Pharmacological and clinical studies, especially Anxiolytic activity and anti-inflammatory on the plant are relatively low, so these studies are suggested in the future. Also, phytochemical investigation on root of the plant is necessary.

2.
J Biomol Struct Dyn ; 40(5): 1942-1951, 2022 03.
Article in English | MEDLINE | ID: mdl-33054569

ABSTRACT

Alzheimer's disease (AD) is a devastating neurodegenerative disease affecting 47 million people worldwide. While acetylcholinesterase (AChE) inhibitors such as donepezil and galantamine are leading drugs in the symptomatic treatment of AD, new AChE inhibitors continue to be explored for improved potency and selectivity. Herein, a molecular networking approach using high resolution (HR-MS) and tandem mass spectrometry (MS2) has been used for rapid chemical profiling of an extract of the medicinal plant Vincetoxicum funebre Boiss. & Kotschy (Apocynaceae family) that was active against AChE. A total of 44 compounds were identified by combining the MN with traditional natural product methods, including the isolation and identification of five known compounds (13, 41-44) and a novel C13-norisoprenoid (40). In addition, the potential inhibitory activity of all 44 compounds was evaluated against the AChE enzyme via molecular docking to provide further support to the proposed structures. The glycosylated flavonoid querciturone (31) exhibited the highest affinity with a docking score value of -13.43 kJ/mol. Another five compounds showed stronger docking scores against AChE than the clinically used donepezil including the most active isolated compound daucosterol (44), with a binding affinity of -10.11 kJ/mol towards AChE. These findings broaden our understanding of Vincetoxicum metabolites and highlight the potential of glycosylated flavonoids as AChE inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Vincetoxicum , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Plants, Medicinal/chemistry , Vincetoxicum/chemistry
3.
Iran J Pharm Res ; 19(2): 182-186, 2020.
Article in English | MEDLINE | ID: mdl-33224223

ABSTRACT

A new phthalide, namely 7-methoxy-3-propylidenephthalide (1), along with two known compounds (2, 3) were isolated from the roots of the edible herb Levisticum officinale W.D.J. Koch, commonly known as lovage and well known in traditional medicine for its spasmolytic and diuretic effects. The structure of the new compound was established by HRMS and 1D & 2D NMR (1H 1H COSY, HMQC, and HMBC) spectroscopic analysis. All compounds are reported for the first time from L. officinale. Compounds 1-3 were tested against two Gram negative (Escherichia coli, Pseudomonas aeruginosa) and two Gram positive (Staphylococcus aureus and vancomycin-resistant Enterococcus [VRE] faecium) bacteria strains. Compound 3 was active against S. aureus, E. coli and vancomycin-resistant E. faecium with MIC values of 16, 64, and 128 µg/mL, respectively.

4.
J Pharm Biomed Anal ; 158: 471-479, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29960238

ABSTRACT

In order to search for discovery of acetylcholinesterase (AChE) inhibitors, as a therapeutic strategy for treatment of the Alzheimer's disease, twenty-five Iranian plants have been evaluated by an in vitro enzymatic Ellman method and molecular docking study. Each plant was successively extracted by n-hexane, ethyl acetate and methanol to obtain a total of 75 extracts. The inhibiting effect of extracts was measured by a colorimetric assay in 96-well microplates. The n-hexane extract of Prangos ferulacea showed the highest AChE inhibitory activity with 75.6% inhibition at a concentration of 50 µg/mL. The chemical composition of this extract was investigated in detail based on a combination of HPLC/bioassay-guided fractionation and molecular networking techniques. The results led to the identification of seventeen compounds, one of them was a fatty acid derivative, two compounds had flavonoid structure and others were furanocoumarin type compounds. In vitro analysis showed that the subfraction F10f was the most potent inhibitor against the activity of AChE with an IC50 value of 25.2 µg/mL and good docking scores of its constituents confirming its high activity.


Subject(s)
Alzheimer Disease/drug therapy , Apiaceae/chemistry , Chemical Fractionation/methods , Cholinesterase Inhibitors/pharmacology , Plant Extracts/pharmacology , Biological Assay/instrumentation , Biological Assay/methods , Chemical Fractionation/instrumentation , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/therapeutic use , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Iran , Methanol , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/therapeutic use
5.
Nat Prod Commun ; 7(7): 923-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22908583

ABSTRACT

c-AMP dependent protein kinase (protein kinase A, PKA) is an important enzyme involved in the regulation of an increasing number of physiological processes including immune function, cardiovascular disease, memory disorders and cancer. The objective of this study was to evaluate the PKA inhibitory activity of a range of algal extracts, along with their fatty acid composition. Six algal species were investigated including two Chlorophyta (Codium dimorphum and Ulva lactuca), two Phaeophyta (Phyllospora comosa and Sargassum sp.) and two Rhodophyta (Prionitis linearis and Corallina vancouveriensis), with the order of PKA inhibitory activity of their extracts identified as follows: brown seaweeds > red seaweeds > green seaweeds with the brown alga Sargassum sp. exhibiting the highest PKA inhibitory activity (84% at 100 microg/mL). GC/MS analysis identified a total of 18 fatty acids in the six algal extracts accounting for 72-87% of each extract, with hexadecanoic acid and 9,12-octadecadienoic acid as the dominant components. The most active extract (Sargassum sp.) also contained the highest percentage of the saturated C14:0 fatty acid (12.8% of the total extract), which is a known to inhibit PKA. These results provide the first description of the PKA inhibitory activity of marine algae along with the first description of the fatty acid composition of these six algal species from South Eastern Australian waters. Importantly, this study reveals that abundant and readily available marine algae are a new and relatively unexplored source of PKA inhibitory compounds.


Subject(s)
Chlorophyta/chemistry , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fatty Acids/chemistry , Phaeophyceae/chemistry , Rhodophyta/chemistry , Australia
6.
Nat Prod Commun ; 6(12): 1921-4, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22312740

ABSTRACT

The c-AMP dependent protein kinase (PKA) inhibition, haemolytic activity, and cytoxicity of 21 extracts obtained from North Western Australian sponges collected from depths of 84-135 m were investigated. Hexane extracts from Ircinia/Sarcotragus sp. and Geodia sp. displayed PKA inhibitory activities of 100 and 97% respectively (at 100 microg/mL), while aq. methanol extracts from Haliclona sp. exhibited potent haemolytic activity (75%) and hexane extracts from Geodia sp. were highly toxic (88%) to the brine shrimp Artemia franciscana. As the non-polar extracts gave the greatest PKA inhibition, these were further analysed by GC-MS and 29 fatty acids were identified in the highest proportions in Ircinia/Sarcotragus sp. > Haliclona sp. > Geodia sp. In contrast to shallow-water sponges that are dominated by polyunsaturated fatty acids with a high percentage of long chain fatty acids, LCFAs (C24-C30), the deep-sea sponges investigated herein were all found to be rich in saturated fatty acids, in particular C14-C20 fatty acids, including odd and branched chain fatty acids, with only low levels (0-10%) of LCFAs. Screening of the PKA inhibitory activity of a series of commercially available fatty acids identified C14-C18 fatty acids as possessing significant PKA inhibitory activity that may contribute to the activity observed in the sponges studied.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Fatty Acids/analysis , Hemolysis/drug effects , Porifera/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Artemia , Fatty Acids/pharmacology , Horses , Porifera/chemistry , Western Australia
7.
Nat Prod Commun ; 5(1): 121-7, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20184036

ABSTRACT

Tansy, Tanacetum macrophyllum (Waldst. & Kit.) Sch. Bip., is often misidentified by herb collectors as yarrow, Achillea grandifolia Friv. With the former, cases of poisoning induced by its ingestion are well documented, but the latter is widely used for ethnopharmacological purposes. The aim of this study was to estimate, based on the volatile metabolite profiles of the two species, the potential health risk connected with their misidentification. GC and GC-MS analysis of the essential oils hydrodistilled using a Clevenger-type apparatus from A. grandifolia, T. macrophyllum, and two plant samples (reputedly of A. grandifolia, but in fact mixtures of A. grandifolia and T. macrophyllum) obtained from a local market, resulted in the identification of 215 different compounds. The main constituents of A. grandifolia oil were ascaridole (15.5%), alpha-thujone (7.5%), camphor (15.6%), borneol (5.2%) and (Z)-jasmone (6.4%), and of T. macrophyllum oil, 1,8-cineole (8.6%), camphor (6.4%), borneol (9.1%), isobornyl acetate (9.5%), copaborneol (4.2%) and gamma-eudesmol (6.2%). The compositions of the oils extracted from the samples obtained from the market were intermediate to those of A. grandifolia and T. macrophyllum. Significant differences in the corresponding volatile profiles and the literature data concerning the known activities of the pure constituents of the oils, suggested that the pharmacological action of the investigated species (or their unintentional mixtures) would be notably different. It seems, however, that misidentification of T. macrophyllum as A. grandifolia does not represent a health risk and that the absence of the toxic alpha-thujone from T. macrophyllum oil may in fact be regarded as a benefit.


Subject(s)
Achillea/chemistry , Oils, Volatile/chemistry , Plants, Medicinal/chemistry , Tanacetum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL