Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS Negl Trop Dis ; 15(11): e0009898, 2021 11.
Article in English | MEDLINE | ID: mdl-34731172

ABSTRACT

Given the worldwide burden of neglected tropical diseases, there is ongoing need to develop novel anthelmintic agents to strengthen the pipeline of drugs to combat these burdensome infections. Many diseases caused by parasitic flatworms are treated using the anthelmintic drug praziquantel (PZQ), employed for decades as the key clinical agent to treat schistosomiasis. PZQ activates a flatworm transient receptor potential (TRP) channel within the melastatin family (TRPMPZQ) to mediate sustained Ca2+ influx and worm paralysis. As a druggable target present in many parasitic flatworms, TRPMPZQ is a promising target for a target-based screening campaign with the goal of discovering novel regulators of this channel complex. Here, we have optimized methods to miniaturize a Ca2+-based reporter assay for Schistosoma mansoni TRPMPZQ (Sm.TRPMPZQ) activity enabling a high throughput screening (HTS) approach. This methodology will enable further HTS efforts against Sm.TRPMPZQ as well as other flatworm ion channels. A pilot screen of ~16,000 compounds yielded a novel activator of Sm.TRPMPZQ, and numerous potential blockers. The new activator of Sm.TRPMPZQ represented a distinct chemotype to PZQ, but is a known chemical entity previously identified by phenotypic screening. The fact that a compound prioritized from a phenotypic screening campaign is revealed to act, like PZQ, as an Sm.TRPMPZQ agonist underscores the validity of TRPMPZQ as a druggable target for antischistosomal ligands.


Subject(s)
Anthelmintics/pharmacology , Helminth Proteins/antagonists & inhibitors , Praziquantel/pharmacology , Schistosoma mansoni/metabolism , Schistosomiasis mansoni/parasitology , Transient Receptor Potential Channels/antagonists & inhibitors , Animals , Anthelmintics/chemistry , Calcium/metabolism , Drug Evaluation, Preclinical , Female , Helminth Proteins/genetics , Helminth Proteins/metabolism , Humans , Male , Mice , Praziquantel/chemistry , Schistosoma mansoni/drug effects , Schistosoma mansoni/genetics , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism
2.
SLAS Discov ; 26(2): 205-215, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33016182

ABSTRACT

Cystic fibrosis (CF) is caused by a mutation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, which disrupts an ion channel involved in hydration maintenance via anion homeostasis. Nearly 5% of CF patients possess one or more copies of the G542X allele, which results in a stop codon at residue 542, preventing full-length CFTR protein synthesis. Identifying small-molecule modulators of mutant CFTR biosynthesis that affect the readthrough of this and other premature termination codons to synthesize a fully functional CFTR protein represents a novel target area of drug discovery. We describe the implementation and integration for large-scale screening of a homogeneous, 1536-well functional G542X-CFTR readthrough assay. The assay uses HEK 293 cells engineered to overexpress the G542X-CFTR mutant, whose functional activity is monitored with a membrane potential dye. Cells are co-incubated with a CFTR amplifier and CFTR corrector to maximize mRNA levels and trafficking of CFTR to the cell surface. Compounds that allow translational readthrough and synthesis of functional CFTR chloride channels are reflected by changes in membrane potential in response to cAMP stimulation with forskolin and CFTR channel potentiation with genistein. Assay statistics yielded Z' values of 0.69 ± 0.06. As further evidence of its suitability for high-throughput screening, we completed automated screening of approximately 666,000 compounds, identifying 7761 initial hits. Following secondary and tertiary assays, we identified 188 confirmed hit compounds with low and submicromolar potencies. Thus, this approach takes advantage of a phenotypic screen with high-throughput scalability to identify new small-molecule G542X-CFTR readthrough modulators.


Subject(s)
Codon, Nonsense , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Discovery/methods , Gene Expression Regulation/drug effects , Protein Biosynthesis/drug effects , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Evaluation, Preclinical/methods , Gene Expression , Genes, Reporter , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Plasmids/genetics , Small Molecule Libraries , Transfection/methods
3.
Sci Rep ; 10(1): 10579, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601341

ABSTRACT

Molecules that correct the folding of protein mutants, restoring their functional trafficking, are called pharmacoperones. Most are clinically irrelevant and possess intrinsic antagonist or agonist activity. Here, we identify compounds capable of rescuing the activity of mutant gonadotropin-releasing hormone receptor or GnRHR which, is sequestered within the cell and if dysfunctional leads to Hypogonadotropic Hypogonadism. To do this we screened the E90K GnRHR mutant vs. a library of 645,000 compounds using a cell-based calcium detection system. Ultimately, we identified 399 compounds with EC50 ≤ 5 µM with no effect in counterscreen assays. Medicinal chemistry efforts confirmed activity of 70 pure samples and mode of action studies, including radioligand binding, inositol phosphate, and toxicity assays, proved that we have a series of tractable compounds that can be categorized into structural clusters. These early lead molecules rescue mutant GnRHR function and are neither agonist nor antagonists of the GnRHR cognate receptor, a feature required for potential clinical utility.


Subject(s)
Receptors, LHRH/agonists , Receptors, LHRH/metabolism , Small Molecule Libraries/pharmacology , Calcium/metabolism , Drug Evaluation, Preclinical , Gonadotropin-Releasing Hormone/agonists , Gonadotropin-Releasing Hormone/metabolism , HeLa Cells , High-Throughput Screening Assays , Humans , Inositol Phosphates/metabolism , Mutation , Protein Folding , Protein Transport , Receptors, LHRH/genetics
4.
Assay Drug Dev Technol ; 15(8): 395-406, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29172645

ABSTRACT

Cystic fibrosis (CF), an inherited genetic disease, is caused by mutation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene, which encodes an ion channel involved in hydration maintenance by anion homeostasis. Ninety percent of CF patients possess one or more copies of the F508del CFTR mutation. This mutation disrupts trafficking of the protein to the plasma membrane and diminishes function of mature CFTR. Identifying small molecule modulators of mutant CFTR activity or biosynthesis may yield new tools for discovering novel CF treatments. One strategy utilizes a 384-well, cell-based fluorescence-quenching assay, which requires extensive wash steps, but reports sensitive changes in fluorescence-quenching kinetic rates. In this study, we describe the methods of adapting the protocol to a homogeneous, miniaturized 1,536-well format and further optimization of this functional F508del CFTR assay. The assay utilizes a cystic fibrosis bronchial epithelial (CFBE41o-) cell line, which was engineered to report CFTR-mediated intracellular flux of iodide by a halide-sensitive yellow fluorescence protein (YFP) reporter. We also describe the limitations of quench rate analysis and the subsequent incorporation of a novel, kinetic data analysis modality to quickly and efficiently find active CFTR modulators. This format yields a Z' value interval of 0.61 ± 0.05. As further evidence of high-throughput screen suitability, we subsequently completed a screening campaign of >645,000 compounds, identifying 2,811 initial hits. After completing secondary and tertiary follow-up assays, we identified 187 potential CFTR modulators, which EC50's < 5 µM. Thus, the assay has integrated the advantages of a phenotypic screen with high-throughput scalability to discover new small-molecule CFTR modulators.


Subject(s)
Bacterial Proteins/analysis , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Evaluation, Preclinical/methods , Luminescent Proteins/analysis , Small Molecule Libraries/analysis , Small Molecule Libraries/pharmacology , Bacterial Proteins/metabolism , Cells, Cultured , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , High-Throughput Screening Assays/methods , Humans , Luminescent Proteins/metabolism , Small Molecule Libraries/chemistry
5.
J Med Chem ; 57(18): 7804-10, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25147929

ABSTRACT

A functional high throughput screen identified a novel chemotype for the positive allosteric modulation (PAM) of the muscarinic acetylcholine receptor (mAChR) subtype 5 (M5). Application of rapid analog, iterative parallel synthesis efficiently optimized M5 potency to arrive at the most potent M5 PAMs prepared to date and provided tool compound 8n (ML380) demonstrating modest CNS penetration (human M5 EC50 = 190 nM, rat M5 EC50 = 610 nM, brain to plasma ratio (Kp) of 0.36).


Subject(s)
Central Nervous System/metabolism , Drug Discovery , Indazoles/metabolism , Indazoles/pharmacology , Piperidines/metabolism , Piperidines/pharmacology , Receptor, Muscarinic M5/chemistry , Receptor, Muscarinic M5/metabolism , Sulfonamides/metabolism , Sulfonamides/pharmacology , Allosteric Regulation/drug effects , Animals , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Indazoles/chemistry , Indazoles/pharmacokinetics , Male , Piperidines/chemistry , Piperidines/pharmacokinetics , Rats , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
6.
ChemMedChem ; 9(8): 1677-82, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24692176

ABSTRACT

Of the five G-protein-coupled muscarinic acetylcholine receptors (mAChRs; M1-M5), M5 is the least explored and understood due to a lack of mAChR subtype-selective ligands. We recently performed a high-throughput functional screen and identified a number of weak antagonist hits that are selective for the M5 receptor. Here, we report an iterative parallel synthesis and detailed molecular pharmacologic profiling effort that led to the discovery of the first highly selective, central nervous system (CNS)-penetrant M5-orthosteric antagonist, with sub-micromolar potency (hM5 IC50=450 nM, hM5 Ki=340 nM, M1-M4 IC50>30 µM), enantiospecific inhibition, and an acceptable drug metabolism and pharmacokinetics (DMPK) profile for in vitro and electrophysiology studies. This compound will be a powerful tool and molecular probe for the further investigation into the role of M5 in addiction and other diseases.


Subject(s)
Acetophenones/chemistry , Isoxazoles/chemistry , Molecular Probes/chemistry , Muscarinic Antagonists/chemistry , Receptor, Muscarinic M5/antagonists & inhibitors , Acetophenones/metabolism , Acetophenones/pharmacokinetics , Animals , Drug Evaluation, Preclinical , Half-Life , Humans , Isoxazoles/metabolism , Isoxazoles/pharmacokinetics , Molecular Probes/metabolism , Molecular Probes/pharmacokinetics , Muscarinic Antagonists/metabolism , Muscarinic Antagonists/pharmacokinetics , Protein Binding , Rats , Receptor, Muscarinic M5/metabolism
7.
Pharmacol Res ; 83: 38-51, 2014 May.
Article in English | MEDLINE | ID: mdl-24373832

ABSTRACT

A pharmacoperone (from "pharmacological chaperone") is a small molecule that enters cells and serves as molecular scaffolding in order to cause otherwise-misfolded mutant proteins to fold and route correctly within the cell. Pharmacoperones have broad therapeutic applicability since a large number of diseases have their genesis in the misfolding of proteins and resultant misrouting within the cell. Misrouting may result in loss-of-function and, potentially, the accumulation of defective mutants in cellular compartments. Most known pharmacoperones were initially derived from receptor antagonist screens and, for this reason, present a complex pharmacology, although these are highly target specific. In this summary, we describe efforts to produce high throughput screens that identify these molecules from chemical libraries as well as a mouse model which provides proof-of-principle for in vivo protein rescue using existing pharmacoperones.


Subject(s)
Drug Evaluation, Preclinical , High-Throughput Screening Assays , Proteins/metabolism , Small Molecule Libraries/pharmacology , Animals , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Humans , Protein Transport/drug effects , Small Molecule Libraries/chemistry
8.
J Med Chem ; 56(22): 9351-5, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24164599

ABSTRACT

A functional high throughput screen and subsequent multidimensional, iterative parallel synthesis effort identified the first muscarinic acetylcholine receptor (mAChR) negative allosteric modulator (NAM) selective for the M5 subtype. ML375 is a highly selective M5 NAM with submicromolar potency (human M5 IC50 = 300 nM, rat M5 IC50 = 790 nM, M1-M4 IC50 > 30 µM), excellent multispecies PK, high CNS penetration, and enantiospecific inhibition.


Subject(s)
Brain/metabolism , Drug Discovery , Imidazoles/chemistry , Imidazoles/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptor, Muscarinic M5/metabolism , Allosteric Regulation/drug effects , Animals , Brain/drug effects , CHO Cells , Cricetinae , Cricetulus , Drug Evaluation, Preclinical , Humans , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Indoles/metabolism , Indoles/pharmacokinetics , Male , Rats , Receptor, Muscarinic M5/chemistry , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL