Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 20(24)2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31847143

ABSTRACT

Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.


Subject(s)
Brain/metabolism , Coconut Oil/pharmacology , Energy Metabolism/drug effects , Fish Oils/pharmacology , Mitochondria/metabolism , Olive Oil/pharmacology , Animals , Electron Transport Chain Complex Proteins/metabolism , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Male , Microglia/metabolism , Rats , Rats, Inbred WKY
2.
Toxicol Sci ; 163(1): 57-69, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29329427

ABSTRACT

Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.


Subject(s)
Aorta/drug effects , Dietary Fats/administration & dosage , Lung Injury/chemically induced , Muscle Contraction/drug effects , Muscle, Smooth, Vascular/drug effects , Ozone/toxicity , Animals , Aorta/physiopathology , Biomarkers/analysis , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Coconut Oil/administration & dosage , Fish Oils/administration & dosage , Foam Cells/cytology , Inflammation , Lung Injury/immunology , Lung Injury/physiopathology , Male , Muscle, Smooth, Vascular/physiopathology , Olive Oil/administration & dosage , Rats, Inbred WKY
SELECTION OF CITATIONS
SEARCH DETAIL