Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Neuroscience ; 418: 69-81, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31487543

ABSTRACT

The hypothalamus controls food intake and energy expenditure. In rats, maternal exposure to nicotine during breastfeeding alters the hypothalamic circuitry of the adult offspring, resulting in leptin resistance, neuropeptides changes and gliosis. Tobacco smoke exposure during lactation causes greater adiposity, hyperphagia and hyperleptinemia in the adult progeny. To understand the central mechanisms underlying the obese phenotype of adult rats that were directly and indirectly exposed to cigarette smoke during lactation, we investigated leptin signaling, orexigenic and anorexigenic neuropeptides expression, as well as astrocyte and microglia markers in hypothalamus. From postnatal day (PND) 3 to 21, Wistar lactating rat dams and their pups were divided into two groups: SE, smoke-exposed in a cigarette-smoking machine (four times/day); Crtl, exposed to filtered air. Offspring of both sexes were euthanized at PND180. The leptin pathway was not altered in SE animals from both sexes. SE males showed increased NPY (arcuate nucleus, ARC), CRH (paraventricular nucleus, PVN), as well as higher GFAP fiber density (ARC and PVN) and IL6 protein content. TRH (PVN) immunohistochemistry was reduced. SE females had lower CART-positive cells (ARC) and lower α-MSH immunostaining intensity (PVN and lateral hypothalamus), with no change of GFAP or IL-6. The protein contents of CX3CR1 (marker of activated microglia) and α7nAChR (anti-inflammatory marker) were not altered in both SE males and females. Neonatal cigarette smoke is deleterious to the hypothalamic circuitry, inducing changes in energy homeostasis favoring hyperphagia and decreased energy expenditure at adulthood in both sexes; however sex-dependent mechanisms were observed.


Subject(s)
Hypothalamus/metabolism , Maternal Exposure , Nicotiana/adverse effects , Sex Factors , Animals , Animals, Newborn , Breast Feeding , Female , Lactation/physiology , Neuropeptides/metabolism , Nicotine/metabolism , Nicotine/pharmacology , Rats, Wistar
2.
Life Sci ; 232: 116575, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31211999

ABSTRACT

AIMS: Maternal smoking is considered a risk factor for childhood obesity. In a rat model of tobacco exposure during breastfeeding, we previously reported hyperphagia, overweight, increased visceral fat and hyperleptinemia in adult female offspring. Obesity and eating disorders are associated with impairment in the endocannabinoid (EC) and dopaminergic (DA) systems. Considering that women are prone to eating disorders, we hypothesize that adult female Wistar rats that were exposed to cigarette smoke (CS) during the suckling period would develop EC and DA systems deregulation, possibly explaining the eating disorder in this model. MATERIAL AND METHODS: To mimic maternal smoking, from postnatal day 3 to 21, dams and offspring were exposed to a smoking machine, 4×/day/1 h (CS group). Control animals were exposed to ambient air. Offspring were evaluated at 26 weeks of age. KEY FINDINGS: Concerning the EC system, the CS group had increased expression of diacylglycerol lipase (DAGL) in the lateral hypothalamus (LH) and decreased in the liver. In the visceral adipose tissue, the EC receptor (CB1r) was decreased. Regarding the DA system, the CS group showed higher dopamine transporter (DAT) protein expression in the prefrontal cortex (PFC) and lower DA receptor (D2r) in the arcuate nucleus (ARC). We also assessed the hypothalamic leptin signaling, which was shown to be unchanged. CS offspring showed decreased plasma 17ß-estradiol. SIGNIFICANCE: Neonatal CS exposure induces changes in some biomarkers of the EC and DA systems, which can partially explain the hyperphagia observed in female rats.


Subject(s)
Dopaminergic Neurons/drug effects , Endocannabinoids/metabolism , Tobacco Smoke Pollution/adverse effects , Animals , Animals, Newborn , Cigarette Smoking , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Dopaminergic Neurons/physiology , Endocannabinoids/physiology , Female , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/metabolism , Hypothalamus/metabolism , Lactation/drug effects , Leptin/metabolism , Lipoprotein Lipase/drug effects , Maternal Exposure/adverse effects , Obesity/etiology , Obesity/metabolism , Rats , Rats, Wistar , Receptors, Cannabinoid/drug effects , Smoking , Nicotiana
3.
Food Chem Toxicol ; 92: 245-55, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27108106

ABSTRACT

Obesity is related to diabetes, higher oxidative stress and nonalcoholic fatty liver disease, and dietetic therapies, for instance calcium-rich diet, can improve these dysfunctions. Rats raised in small litters (SL) had increased fat depots and insulin resistance at adulthood associated with higher liver oxidative stress and microsteatosis. Thus, we evaluated if dietary calcium can improve these changes. In PN3, litter size was adjusted to 3 pups (SL group) to induce overfeeding, while controls had 10 pups until weaning. At PN120, SL group was randomly divided into: rats fed with standard chow or fed with calcium supplementation (SL-Ca group, 10 g/kg chow) for 60 days. At PN180, dietary calcium normalized food consumption, visceral fat, plasma aspartate aminotransferase (AST) and glycaemia. Concerning oxidative balance, calcium restored both higher hepatic lipid peroxidation and protein carbonylation as well as higher plasma lipid peroxidation. Higher fatty acid synthase (FAS) content, steatosis and lower protein kinase B (Akt) in SL group were normalized by dietary calcium and SL-Ca rats had lower hepatic cholesterol. Thus, calcium supplementation improved the insulin sensitivity, redox balance and steatosis in the liver. Therefore, dietary calcium can be a promising therapy for liver disease in the metabolic syndrome.


Subject(s)
Calcium/administration & dosage , Fatty Liver/prevention & control , Liver Diseases/prevention & control , Obesity/physiopathology , Overnutrition/physiopathology , Oxidative Stress/drug effects , Animals , Animals, Newborn , Antioxidants/metabolism , Blotting, Western , Body Weight , Calcium/pharmacology , Diet , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Insulin Resistance , Lactation , Liver Diseases/metabolism , Liver Diseases/pathology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL