Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Front Pharmacol ; 14: 1158222, 2023.
Article in English | MEDLINE | ID: mdl-37101545

ABSTRACT

Introduction: Tyrosine kinase inhibitor drugs (TKIs) are highly effective cancer drugs, yet many TKIs are associated with various forms of cardiotoxicity. The mechanisms underlying these drug-induced adverse events remain poorly understood. We studied mechanisms of TKI-induced cardiotoxicity by integrating several complementary approaches, including comprehensive transcriptomics, mechanistic mathematical modeling, and physiological assays in cultured human cardiac myocytes. Methods: Induced pluripotent stem cells (iPSCs) from two healthy donors were differentiated into cardiac myocytes (iPSC-CMs), and cells were treated with a panel of 26 FDA-approved TKIs. Drug-induced changes in gene expression were quantified using mRNA-seq, changes in gene expression were integrated into a mechanistic mathematical model of electrophysiology and contraction, and simulation results were used to predict physiological outcomes. Results: Experimental recordings of action potentials, intracellular calcium, and contraction in iPSC-CMs demonstrated that modeling predictions were accurate, with 81% of modeling predictions across the two cell lines confirmed experimentally. Surprisingly, simulations of how TKI-treated iPSC-CMs would respond to an additional arrhythmogenic insult, namely, hypokalemia, predicted dramatic differences between cell lines in how drugs affected arrhythmia susceptibility, and these predictions were confirmed experimentally. Computational analysis revealed that differences between cell lines in the upregulation or downregulation of particular ion channels could explain how TKI-treated cells responded differently to hypokalemia. Discussion: Overall, the study identifies transcriptional mechanisms underlying cardiotoxicity caused by TKIs, and illustrates a novel approach for integrating transcriptomics with mechanistic mathematical models to generate experimentally testable, individual-specific predictions of adverse event risk.

2.
Methods Mol Biol ; 1816: 17-35, 2018.
Article in English | MEDLINE | ID: mdl-29987808

ABSTRACT

Mathematical modeling is a powerful tool to study the complex and orchestrated biological process of cardiac electrical activity. By integrating experimental data from key components of cardiac electrophysiology, systems biology simulations can complement empirical findings, provide quantitative insight into physiological and pathophysiological mechanisms of action, and guide new hypotheses to better understand this complex biological system to develop novel cardiotherapeutic approaches. In this chapter, we briefly introduce in silico methods to describe the dynamics of physiological and pathophysiological single-cell and tissue-level cardiac electrophysiology. Using a "bottom-up" approach, we first describe the basis of ion channel mathematical models. Next, we discuss how the net flux of ions through such channels leads to changes in transmembrane voltage during cardiomyocyte action potentials. By applying these fundamentals, we describe how action potentials propagate in models of cardiac tissue. In addition, we provide case studies simulating single-cell and tissue-level arrhythmogenesis, as well as promising approaches to circumvent or overcome such adverse events. Overall, basic concepts and tools are discussed in this chapter as an accessible introduction to nonmathematicians to foster an understanding of electrophysiological modeling studies and help facilitate communication with dry lab colleagues and collaborators.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Computer Simulation , Heart/physiopathology , Models, Cardiovascular , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Electrophysiologic Techniques, Cardiac/methods , Humans , Ion Channels/metabolism , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
3.
Cell Syst ; 6(1): 13-24, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29199020

ABSTRACT

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.


Subject(s)
Cataloging/methods , Systems Biology/methods , Computational Biology/methods , Databases, Chemical/standards , Gene Expression Profiling/methods , Gene Library , Humans , Information Storage and Retrieval/methods , National Health Programs , National Institutes of Health (U.S.)/standards , Transcriptome , United States
4.
Circ Res ; 121(4): 411-423, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28642329

ABSTRACT

RATIONALE: Myocardial delivery of human mesenchymal stem cells (hMSCs) is an emerging therapy for treating the failing heart. However, the relative effects of hMSC-mediated heterocellular coupling (HC) and paracrine signaling (PS) on human cardiac contractility and arrhythmogenicity remain unresolved. OBJECTIVE: The objective is to better understand hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity by integrating experimental and computational approaches. METHODS AND RESULTS: Extending our previous hMSC-cardiomyocyte HC computational model, we incorporated experimentally calibrated hMSC PS effects on cardiomyocyte L-type calcium channel/sarcoendoplasmic reticulum calcium-ATPase activity and cardiac tissue fibrosis. Excitation-contraction simulations of hMSC PS-only and combined HC+PS effects on human cardiomyocytes were representative of human engineered cardiac tissue (hECT) contractile function measurements under matched experimental treatments. Model simulations and hECTs both demonstrated that hMSC-mediated effects were most pronounced under PS-only conditions, where developed force increased ≈4-fold compared with non-hMSC-supplemented controls during physiological 1-Hz pacing. Simulations predicted contractility of isolated healthy and ischemic adult human cardiomyocytes would be minimally sensitive to hMSC HC, driven primarily by PS. Dominance of hMSC PS was also revealed in simulations of fibrotic cardiac tissue, where hMSC PS protected from potential proarrhythmic effects of HC at various levels of engraftment. Finally, to study the nature of the hMSC paracrine effects on contractility, proteomic analysis of hECT/hMSC conditioned media predicted activation of PI3K/Akt signaling, a recognized target of both soluble and exosomal fractions of the hMSC secretome. Treating hECTs with exosome-enriched, but not exosome-depleted, fractions of the hMSC secretome recapitulated the effects observed with hMSC conditioned media on hECT-developed force and expression of calcium-handling genes (eg, SERCA2a, L-type calcium channel). CONCLUSIONS: Collectively, this integrated experimental and computational study helps unravel relative hMSC PS and HC effects on human cardiac contractility and arrhythmogenicity, and provides novel insight into the role of exosomes in hMSC paracrine-mediated effects on contractility.


Subject(s)
Computer Simulation , Excitation Contraction Coupling/physiology , Mesenchymal Stem Cells/physiology , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Paracrine Communication/physiology , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/physiopathology , Cell Culture Techniques , Cell Differentiation/physiology , Cells, Cultured , Humans , Mice , Rats
5.
Biophys J ; 94(7): L54-6, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18223001

ABSTRACT

The possible contribution of Na(+)-Ca(2+) exchange to the triggering of Ca(2+) release from the sarcoplasmic reticulum in ventricular cells remains unresolved. To gain insight into this issue, we measured the "trigger flux" of Ca(2+) crossing the cell membrane in rabbit ventricular myocytes with Ca(2+) release disabled pharmacologically. Under conditions that promote Ca(2+) entry via Na(+)-Ca(2+) exchange, internal [Na(+)] (10 mM), and positive membrane potential, the Ca(2+) trigger flux (measured using a fluorescent Ca(2+) indicator) was much greater than the Ca(2+) flux through the L-type Ca(2+) channel, indicating a significant contribution from Na(+)-Ca(2+) exchange to the trigger flux. The difference between total trigger flux and flux through L-type Ca(2+) channels was assessed by whole-cell patch-clamp recordings of Ca(2+) current and complementary experiments in which internal [Na(+)] was reduced. However, Ca(2+) entry via Na(+)-Ca(2+) exchange measured in the absence of L-type Ca(2+) current was considerably smaller than the amount inferred from the trigger flux measurements. From these results, we surmise that openings of L-type Ca(2+) channels increase [Ca(2+)] near Na(+)-Ca(2+) exchanger molecules and activate this protein. These results help to resolve seemingly contradictory results obtained previously and have implications for our understanding of the triggering of Ca(2+) release in heart cells under various conditions.


Subject(s)
Calcium Channels, L-Type/physiology , Calcium Signaling/physiology , Calcium/metabolism , Ion Channel Gating/physiology , Sarcoplasmic Reticulum/physiology , Sodium-Calcium Exchanger/physiology , Sodium/metabolism , Animals , Cells, Cultured , Heart Ventricles/cytology , Myocytes, Cardiac , Rabbits , Ventricular Function
SELECTION OF CITATIONS
SEARCH DETAIL