ABSTRACT
The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.
Subject(s)
Cynara scolymus , Sesquiterpenes , Cynara scolymus/chemistry , Phenols/chemistry , Conservation of Energy Resources , Glucosinolates/metabolism , Lactones/chemistry , Sesquiterpenes/chemistry , Plant Extracts/chemistryABSTRACT
The nuclear magnetic resonance (NMR)-based metabolomic approach was used as analytical methodology to study the urine samples of chronic inflammatory rheumatic disease (CIRD) patients. The urine samples of CIRD patients were compared to the ones of both healthy subjects and patients with multiple sclerosis (MS), another immuno-mediated disease. Urine samples collected from 39 CIRD patients, 25 healthy subjects, and 26 MS patients were analyzed using 1H NMR spectroscopy, and the NMR spectra were examined using partial least squares-discriminant analysis (PLS-DA). PLS-DA models were validated by a double cross-validation procedure and randomization tests. Clear discriminations between CIRD patients and healthy controls (average diagnostic accuracy 83.5 ± 1.9%) as well as between CIRD patients and MS patients (diagnostic accuracy 81.1 ± 1.9%) were obtained. Leucine, alanine, 3-hydroxyisobutyric acid, hippuric acid, citric acid, 3-hydroxyisovaleric acid, and creatinine contributed to the discrimination; all of them being in a lower concentration in CIRD patients as compared to controls or to MS patients. The application of NMR metabolomics to study these still poorly understood diseases can be useful to better clarify the pathologic mechanisms; moreover, as a holistic approach, it allowed the detection of, by means of anomalous metabolic traits, the presence of other pathologies or pharmaceutical treatments not directly connected to CIRDs, giving comprehensive information on the general health state of individuals. Graphical abstract NMR-based metabolomic approach as a tool to study urine samples in CIRD patients with respect to MS patients and healthy controls.