Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Bioorg Chem ; 134: 106466, 2023 05.
Article in English | MEDLINE | ID: mdl-36934691

ABSTRACT

Actinidia polygama has been used as a traditional medicine for treating various diseases. In the present study, 13 compounds, including three new monoterpenoids (1-3), were isolated from the leaves of A. polygama to investigate the bioactive constituents of the plant. The structures were characterized by analyzing spectroscopic and chiroptical data. These compounds were preliminarily screened for their ability to increase insulin secretion levels after glucose stimulation. Of these, 3-O-coumaroylmaslinic acid (4) and jacoumaric acid (5) showed activity. In further biological studies, these compounds exhibited increased glucose-stimulated insulin secretion (GSIS) activity without cytotoxicity in rat INS-1 pancreatic ß-cells as well as α-glucosidase inhibitory activity. Furthermore, both compounds increased insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), pancreatic and duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression. Hence, these compounds may be developed as potential antidiabetic agents.


Subject(s)
Actinidia , alpha-Glucosidases , Rats , Animals , Insulin Secretion , alpha-Glucosidases/metabolism , Actinidia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Glucose/metabolism , Insulin/metabolism
2.
J Photochem Photobiol B ; 218: 112184, 2021 May.
Article in English | MEDLINE | ID: mdl-33848804

ABSTRACT

Tripterygium wilfordii Hook. f. is a traditional medicinal plant and has long been used in East Asia to treat many diseases. However, the extract and active components have never been investigated as potential photosensitizers for photodynamic treatment to kill pathogenic microorganisms. Here, the antimicrobial photodynamic treatment (APDT) effects of the extract, fractions, and compounds of T. wilfordii were evaluated in vitro and in vivo. Ethanolic extract (TWE) and the photosensitizer-enriched fraction (TW-F5) were prepared from dried T. wilfordii. Six active compounds were isolated from TW-F5 by semipreparative high-performance liquid chromatography, and their chemical structures were characterized through spectroscopic and spectrometric analysis. The singlet oxygen from extracts, fractions, and compounds was measured by using the imidazole-N,N-dimethyl-4-nitrosoaniline method. These extracts, fractions, and compounds were used as photosensitizers for the inactivation of bacteria and fungi by red light at 660 nm. The in vitro APDT effects were also evaluated in the model animal Caenorhabditis elegans. APDT with TWE showed effective antimicrobial activity against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Candida albicans. TW-F5, consisting of six pheophorbide compounds, also showed strong APDT activity. The photosensitizers were taken up into the bacterial cells and induced intracellular ROS production by APDT. TWE and TW-F5 also induced a strong APDT effect in vitro against skin pathogens, including Staphylococcus epidermidis and Streptococcus pyogenes. We evaluated the APDT effects of TWE and TW-F5 in C. elegans infected with various pathogens and found that PDT effectively controlled pathogenic bacteria without strong side effects. APDT reversed the growth retardation of worms induced by pathogen infection and decreased the viable pathogenic bacterial numbers associated with C. elegans. Finally, APDT with TWE increased the survivability of C. elegans infected with S. pyogenes. In summary, TWE and TW-F5 were found to be effective antimicrobial photosensitizers in PDT.


Subject(s)
Anti-Infective Agents/chemistry , Caenorhabditis elegans/drug effects , Photosensitizing Agents/chemistry , Plant Extracts/chemistry , Tripterygium/chemistry , Animals , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Cell Membrane Permeability , Drug Resistance, Bacterial , Humans , Methicillin/pharmacology , Models, Animal , Photochemotherapy , Photosensitizing Agents/pharmacology , Plant Extracts/pharmacology , Reactive Oxygen Species/chemistry , Reactive Oxygen Species/metabolism , Singlet Oxygen/chemistry , Singlet Oxygen/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus epidermidis
SELECTION OF CITATIONS
SEARCH DETAIL