Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38068940

ABSTRACT

The principal difference between hydroponics and other substrate cultivation methods is the flowing liquid hydroponic cultivation substrate. Our previous studies have revealed that a suitable flowing environment of nutrient solution promoted root development and plant growth, while an excess flow environment was unfavorable for plants. To explain the thigmomorphogenetic response of excess flow-induced metabolic changes, six groups of lettuce (Lactuca sativa L.), including two flow conditions and three time periods, were grown. Compared with the plants without flow, the plants with flow showed decreased root fresh weight, total root length, root surface area, and root volume but increased average root diameter and root density. The roots with flow had more upregulated metabolites than those without flow, suggesting that the flow may trigger metabolic synthesis and activity. Seventy-nine common differential metabolites among six groups were screened, and enrichment analysis showed the most significant enrichment in the arginine biosynthesis pathway. Arginine was present in all the groups and exhibited greater concentrations in roots with flow than without flow. It can be speculated from the results that a high-flowing environment of nutrient solution promotes arginine synthesis, resulting in changes in root morphology. The findings provide insights on root thigmomorphogenesis affected by its growing conditions and help understand how plants respond to environmental mechanical forces.


Subject(s)
Plants , Hydroponics/methods , Nutrients , Arginine
2.
Front Plant Sci ; 13: 938199, 2022.
Article in English | MEDLINE | ID: mdl-35800615

ABSTRACT

Supplemental interlighting is commonly used in modern greenhouses to improve light deficiency, but the light spectrum affects fruit quality and color change. This study aimed to analyze the effect of interlighting with red, blue, and additional far-red light on the fruit qualities and carotenoid contents of red and yellow sweet peppers (Capsicum annuum L.). Three light treatments were applied: natural light (NL), NL with red + blue LED interlighting (71 µmol m-2 s-1) (RB), and RB with far-red light (55 µmol m-2 s-1) (RBFR). Ascorbic acid, free sugars, and individual carotenoid content were quantified with HPLC analysis. Fruits were sampled on 2020.11.14 (Group 1) and 2021.01.03 (Group 2) from the plants grown under average light intensities of 335.9 and 105.6 µmol m-2 s-1, respectively. In the overall period, total yields in RB and RBFR were 22 and 33% higher than those in NL in red fruits and 2 and 21% higher in yellow fruits, respectively. In both colored fruits, ascorbic acid, total soluble sugar, and carotenoid content were higher in RB and RBFR than NL. In Group 1, ascorbic acid and total soluble sugar were significantly different between RB and RBFR only in red fruits. In Group 2, ascorbic acids in red and yellow fruits were 9 and 3% higher in RBFR than RB but total soluble sugars were 4 and 2% lower, respectively. Carotenoid contents in red and yellow fruits were 3.0- and 2.1-fold higher in RB and 2.0- and 1.4-fold higher in RBFR than those in NL, respectively. In this study, interlighting had a significant impact on fruit quality in Group 2, mainly due to the increase in the ratio of interlighting to total light by seasonal changes. In particular, red and yellow fruit yields were 9% and 19% higher in RBFR than RB, but carotenoid contents were 26 to 9% lower, respectively. This result exhibited that additional far-red lighting has a trade-off relationship between fruit yield and carotenoid content. Thus, it is necessary to provide an adequate light spectrum according to a specific cultivation purpose, such as improving yield or accumulating plastids in fruits.

SELECTION OF CITATIONS
SEARCH DETAIL