Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Fitoterapia ; 174: 105841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38296170

ABSTRACT

Prunella vulgaris (PV) is a medicine and food homologous plant, but its quality evaluation seldom relies on the polysaccharides (PVPs). In this work, we established the multi-level fingerprinting and in vitro anti-inflammatory evaluation approaches to characterize and compare the polysaccharides of P. vulgaris collected from the major production regions in China. PVPs prepared from 22 batches of samples gave the content variation of 5.76-24.524 mg/g, but displayed high similarity in the molecular weight distribution. Hydrolyzed oligosaccharides with degrees of polymerization 2-14 were characterized with different numbers of pentose and hexose by HILIC-MS. The tested 22 batches of oligosaccharides exhibited visible differences in peak abundance, which failed to corelate to their production regions. All the PVPs contained Gal, Xyl, and Ara, as the main monosaccharides. Eleven batches among the tested PVPs showed the significant inhibitory effects on NO production on LPS-induced RAW264.7 cells at 10 µg/mL, but the exerted efficacy did not exhibit correlation with the production regions. Conclusively, we, for the first time, investigated the chemical features of PVPs at three levels, and assessed the chemical and anti-inflammatory variations among the different regions of P. vulgaris samples.


Subject(s)
Prunella , Prunella/chemistry , Molecular Structure , Polysaccharides/pharmacology , Polysaccharides/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oligosaccharides
2.
Phytother Res ; 38(1): 384-399, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992723

ABSTRACT

Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1ß, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.


Subject(s)
Myocardial Infarction , Prunella , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prunella/metabolism , Ventricular Remodeling , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Fibrosis , Caffeic Acids/pharmacology
3.
Rapid Commun Mass Spectrom ; 36(24): e9411, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36195983

ABSTRACT

RATIONALE: Helwingia japonica (HJ), a traditional medicinal plant, is commonly used for the treatment of dysentery, blood in the stool, and scald burns. Three major HJ species, Helwingia japonica (Thunb.) Dietr. (QJY), Helwingia himalaica Hook. f. et Thoms. ex C. B. Clarke, and Helwingia chinensis Batal., share great similarities in both morphology and chemical constituents. The discrimination of medicinal plants directly affects their pharmacological and clinical effects. Here, we solved the taxonomy uncertainty of these three HJ species and explored the discrimination and study of other traditional medicines (TMs). METHODS: First, the anti-inflammatory effects of the three HJ species were compared using lipopolysaccharide (LPS)-induced inflammatory responses in mouse leukemia cells of monocyte macrophage (RAW) 264.7 cells. Then, plant metabolomics were performed in 48 batches of samples to discover chemical markers for discriminating different HJ species. Finally, network pharmacology was applied to explore the linkages among constituents, targets, and signaling pathways. RESULTS: In vitro experiments showed that the QJY exhibited the most potential anti-inflammatory activities. Meanwhile, 172 compounds were tentatively identified and eight metabolites with higher relative content in QJY were designated as chemical markers to distinguish QJY and the other two species. According to the property of absorbed in vivo, threonic acid, arginine, and tyrosine were selected to construct a component-target-pathway network. The network pharmacology analysis confirmed that the chemotaxonomy differentiation was consistent with the bioactive assessment. CONCLUSIONS: The present study demonstrates that bioactivity evaluation integrated with plant metabolomics and network pharmacology could be used as an effective approach to discriminate different TMs and discover the active compounds.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Mice , Animals , Network Pharmacology , Metabolomics , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Drugs, Chinese Herbal/metabolism
4.
Toxicol Sci ; 190(1): 54-63, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36073954

ABSTRACT

St. John's wort (SJW) is a medicinal herb remedy for mild depression. However, long-term use of SJW has raised safety concerns in clinical practice because of drug-drug interactions. Excessive use of acetaminophen (APAP) causes severe hepatotoxicity, but whether SJW modulates APAP-induced liver injury remains unclear. In this study, the effect of long-term SJW administration on APAP-induced acute hepatotoxicity and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated that SJW exacerbates APAP-induced toxicity. Moreover, SJW markedly promoted glutathione depletion and increased the levels of the APAP-cysteine and APAP-N-acetylcysteinyl adducts in mice, which enhanced APAP metabolic activation and aggravated APAP-induced liver injury. To further elucidate APAP metabolic activation in liver injury induced by SJW, the activities and expression levels of CYP2E1 and CYP3A were measured. The results showed that the activities and expression levels of CYP2E1 and CYP3A were increased after SJW treatment. Furthermore, the PXR-CYP signaling pathway was activated by SJW, and its downstream target genes were upregulated. Collectively, this study demonstrated that the long-term administration of SJW extract led to the metabolic activation of APAP and significantly exacerbated APAP-induced liver injury, which may suggest caution for the clinical use of SJW and APAP.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hypericum , Mice , Animals , Acetaminophen/toxicity , Acetaminophen/metabolism , Hypericum/metabolism , Cytochrome P-450 CYP2E1 , Cytochrome P-450 CYP3A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL