Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
Add more filters

Publication year range
1.
Complement Ther Med ; 82: 103038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582375

ABSTRACT

OBJECTIVE: An increasing body of evidence suggests a positive role of chiropractic in the treatment of neuro-musculoskeletal disorders. This study aims to explore current research hotspots and trends, providing insights into the broad prospects of this field. METHODS: A bibliometric review was conducted on all chiropractic articles included in the Web of Science Core Collection before December 31, 2023. RESULTS: Over the past century, the volume of research in the field of chiropractic has been fluctuating annually, with four peaks observed in total. The United States, Canada, Australia, and the United Kingdom are leading countries. Chu, Eric Chun-Pu is the author with the most publications, while Bronfort, Gert has the highest total citation count. The University of Southern Denmark has produced the most publications, while Queens University - Canada is the most central institution. The Journal of Manipulative and Physiological Therapeutics is the journal with the most publications and citations, while the Journal of the American Medical Association is the most central journal. The two most-cited articles were both authored by Eisenberg DM. Emerging keywords include "chronic pain" and "skills". The theoretical mechanisms and scientific basis of chiropractic, its clinical practice and safety, education and training, integration with other disciplines, and patient experiences and satisfaction are the frontiers and hotspots of research. CONCLUSION: This study integrates bibliometric analysis to summarize the current state of research and global network centers in the field of chiropractic, further highlighting the hotspots and trends in this field. However, Individual and national rankings should be interpreted with caution due to our focus on Web of Science rather than PubMed.


Subject(s)
Bibliometrics , Chiropractic , Humans , Biomedical Research , History, 20th Century , History, 21st Century
2.
NPJ Biofilms Microbiomes ; 10(1): 24, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503759

ABSTRACT

Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.


Subject(s)
Circadian Clocks , Gastrointestinal Microbiome , Panax , Rats , Animals , Circadian Clocks/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/pharmacology , Inflammation , Signal Transduction , Gene Expression
3.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38460576

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Subject(s)
Hyperuricemia , Panax , Renal Insufficiency, Chronic , Mice , Animals , Hyperuricemia/drug therapy , Hyperuricemia/pathology , Transforming Growth Factor beta1 , Uric Acid , Creatinine , Ki-67 Antigen , Obesity/drug therapy , Fibrosis , Panax/chemistry , Cadherins , Nitrogen , Lipids , Urea
4.
Diabetologia ; 67(4): 738-754, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236410

ABSTRACT

AIMS/HYPOTHESIS: Sodium-glucose co-transporter 2 (SGLT2) inhibitors (SGLT2i) are antihyperglycaemic drugs that protect the kidneys of individuals with type 2 diabetes mellitus. However, the underlying mechanisms mediating the renal benefits of SGLT2i are not fully understood. Considering the fuel switches that occur during therapeutic SGLT2 inhibition, we hypothesised that SGLT2i induce fasting-like and aestivation-like metabolic patterns, both of which contribute to the regulation of metabolic reprogramming in diabetic kidney disease (DKD). METHODS: Untargeted and targeted metabolomics assays were performed on plasma samples from participants with type 2 diabetes and kidney disease (n=35, 11 women) receiving canagliflozin (CANA) 100 mg/day at baseline and 12 week follow-up. Next, a systematic snapshot of the effect of CANA on key metabolites and pathways in the kidney was obtained using db/db mice. Moreover, the effects of glycine supplementation in db/db mice and human proximal tubular epithelial cells (human kidney-2 [HK-2]) cells were studied. RESULTS: Treatment of DKD patients with CANA for 12 weeks significantly reduced HbA1c from a median (interquartile range 25-75%) of 49.0 (44.0-57.0) mmol/mol (7.9%, [7.10-9.20%]) to 42.2 (39.7-47.7) mmol/mol (6.8%, [6.40-7.70%]), and reduced urinary albumin/creatinine ratio from 67.8 (45.9-159.0) mg/mmol to 47.0 (26.0-93.6) mg/mmol. The untargeted metabolomics assay showed downregulated glycolysis and upregulated fatty acid oxidation. The targeted metabolomics assay revealed significant upregulation of glycine. The kidneys of db/db mice undergo significant metabolic reprogramming, with changes in sugar, lipid and amino acid metabolism; CANA regulated the metabolic reprogramming in the kidneys of db/db mice. In particular, the pathways for glycine, serine and threonine metabolism, as well as the metabolite of glycine, were significantly upregulated in CANA-treated kidneys. Glycine supplementation ameliorated renal lesions in db/db mice by inhibiting food intake, improving insulin sensitivity and reducing blood glucose levels. Glycine supplementation improved apoptosis of human proximal tubule cells via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway. CONCLUSIONS/INTERPRETATION: In conclusion, our study shows that CANA ameliorates DKD by inducing fasting-like and aestivation-like metabolic patterns. Furthermore, DKD was ameliorated by glycine supplementation, and the beneficial effects of glycine were probably due to the activation of the AMPK/mTOR pathway.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Mice , Animals , Humans , Female , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , Metabolic Reprogramming , AMP-Activated Protein Kinases/metabolism , Sodium-Glucose Transporter 2/metabolism , Estivation , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Kidney/metabolism , Fasting , TOR Serine-Threonine Kinases/metabolism , Glycine/metabolism , Mammals/metabolism
5.
Phytomedicine ; 124: 155255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38181528

ABSTRACT

BACKGROUND: The inflammatory cascade mediated by macrophages and T cells is considered to be an important factor in promoting the progression of rheumatoid arthritis (RA). Our previous study found that berberine (BBR) can therapeutically impact adjuvant arthritis (AA) in rats through the regulation of macrophage polarization and the balance of Th17/Treg. However, whether BBR's effects on CD4+T cells response are related to its suppression of M1 macrophage still unclear. PURPOSE: The study aimed to estimate the mechanism of BBR in regulating the immunometabolism and differentiation of CD4+T cells are related to exosome derived from M1-macrophage (M1-exo). STUDY-DESIGN/METHODS: Mice model of collagen-induced arthritis (CIA) was established to investigate the antiarthritic effect of BBR was related with regulation of M1-exo to balance T cell subsets. Bioinformatics analysis using the GEO database and meta-analysis. In vitro, we established the co-culture system involving M1-exo and CD4+ T cells to examine whether BBR inhibits CD4+T cell activation and differentiation by influencing M1-exo-miR155. Exosome was characterized using transmission electron microscopy and western blot analysis, macrophage and CD4+T cell subpopulation were detected by flow cytometry. Further, the metabolic profiles of CD4+T cells were assessed by ECAR, OCR, and the level of glucose, lactate, intracellular ATP. RESULT: BBR reinstates CD4+ T cell homeostasis and reduces miR155 levels in both M1-exo and CD4+ T cells obtained from mice with CIA. In vitro, we found exosomes are indispensable for M1-CM on T lymphocyte activation and differentiation. BBR reversed M1-exo facilitating the activation and differentiation of CD4+T cells. Furthermore, BBR reversed glycolysis reprogramming of CD4+T cells induced by M1-exo, while these regulation effects were significantly weakened by miR155 mimic. CONCLUSION: The delivery of miR-155 by M1-exo contributes to CD4+ T cell immunometabolism dysfunction, a process implicated in the development of RA. The anti-arthritic effect of BBR is associated with the suppression of glycolysis and the disruption of CD4+ T cell subsets balance, achieved by reducing the transfer of M1-exo-miR155 into T cells.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Berberine , MicroRNAs , Animals , Mice , Rats , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Berberine/pharmacology , CD4-Positive T-Lymphocytes , Disease Models, Animal , Macrophages , MicroRNAs/metabolism
6.
J Control Release ; 366: 142-159, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38145660

ABSTRACT

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Photochemotherapy , Humans , Female , Reactive Oxygen Species/metabolism , Hydrogels/therapeutic use , Hydrogen Peroxide , Indocyanine Green/therapeutic use , Indocyanine Green/chemistry , Breast Neoplasms/drug therapy , Heat-Shock Proteins
7.
Plant Dis ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700470

ABSTRACT

Ficus hirta Vahl. is a Moraceae plant, named for its palm-like leaves. It is a widely used traditional medicinal material with definite curative effect. At the same time, it is also a commonly used soup material among the folk in South China. In March 2022, a serious leaf spot disease with symptoms similar to anthracnose was observed on F. hirta in several plantations in Qinzhou and Zhanjiang City of China, with an incidence of 32~65%. The early symptoms of infected leaves were small, round, yellow spots that further expanded into larger, brown, irregular, necrotic lesions surrounded by dark brown edges, which eventually led to leaf wilt. Twenty symptomatic leaves were collected from three plantations with a total area of about 10 hm2. Fragments (2×2 mm) from the 20 infected leaves were surface sterilized, plated on potato dextrose agar (PDA) and incubated at 28°C. After 3 days, isolates with similar cultural morphology were obtained and three representative isolates (WZMT-1, WZMT-3 and WZMT-8) were randomly selected for following study. The colonies by single-spore purification on PDA were initially cottony, pale white and became grayish green with age. The conidia were hyaline, abundant, cylindrical, with rounded ends, 14.4~18.2 µm×4.6~6.0 µm (av. 16.2 µm×5.4 µm, n=100). Conidiogenous cells hyaline, cylindrical or ampulliform, 6.2~22.7 µm × 2.7~5.0 µm (av. 12.9 µm×3.8 µm, n=50). Appressoria were brown to dark brown, ovoid to clavate, elliptical or irregular, 7.9~13.4 µm × 5.6~9.2 µm (av. 10.6 µm×7.9 µm, n=50). The morphology of the fungus resembled Colletotrichum fructicola (Prihastuti et al. 2009). For molecular identification, the internal transcribed spacer (ITS) regions, glyceraldehyde-3-phosphatedehydrogenase (GAPDH), actin (ACT), beta-tubulin 2 (TUB2), calmodulin (CAL), partial manganese superoxide dismutase (sod2), partial Apn2-Mat1-2 intergenic spacer and partial mating type (Mat1-2) (ApMat) genes were amplified from genomic DNA for the isolates using the primers described by Silva et al. (2012) and Weir et al. (2012). The sequences of the above seven loci of the three isolates (accession nos. OQ121661 to OQ121663 and OQ133400 to OQ133417) were obtained and showed over 99% identity with the existing sequences of ex-type culture ICMP 18581 of Colletotrichum fructicola (Weir et al. 2012). A multilocus phylogenetic analysis of the seven loci concatenated sequences using the maximum likelihood method revealed that the isolates belong to C. fructicola. To confirm pathogenicity, five 3-month-old potted plants were used for inoculation with each representative isolate. Tested plants were sprayed with 10 ml of a conidial suspension (1 × 108 conidia/ml) , and the controls plants were sprayed with sterile water. All the plants were incubated in a growth chamber at 26 ± 2°C with 95% relative humidity. After 10 days, typical lesions like those observed on the field plants appeared on all inoculated plants, while the control remained healthy. The same fungal pathogen was reisolated and the identity was confirmed by morphological characterization and molecular analysis, confirming Koch's postulates. The pathogen has been reported as the causal agent of anthracnose on a wide range of plant hosts worldwide (Marquez-Zequera et al. 2018; Horfer et al. 2021; Jiang et al. 2022; Li et al. 2023). To our knowledge, this is the first report of anthracnose on F. hirta caused by C. fructicola in southern China.

8.
BMC Gastroenterol ; 23(1): 292, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653392

ABSTRACT

BACKGROUND: Several proteins in the tripartite-motif (TRIM) family are associated with the development of colorectal cancer (CRC), but research on the role of TRIM69 was lacking. The present study examined the correlation between TRIM69 expression and colon adenocarcinoma (COAD). METHODS: mRNA sequencing data for COAD patients was extracted from The Cancer Genome Atlas to analyze correlations between TRIM69 expression and patients' clinical features as well as survival. Potential associations with immune cells and chemosensitivity also were predicted using various algorithms in the TIMER, Limma, clusterProfiler, GeneMANIA, and Gene Set Cancer Analysis platforms. Subsequently, polymerase chain reaction analysis and immunohistochemical staining were used to detect TRIM69 expression in COAD tissue samples from real-world patients. RESULTS: TRIM69 expression was lower in COAD tissues than in normal tissues and correlated with the pathologic stage and metastasis (M category). Additionally, TRIM69 was found to be involved in several immune-related pathways, notably the NOD-like signaling pathway. These results suggest that high TRIM69 expression has the potential to enhance tumor sensitivity to 5-fluorouracil and programmed cell death protein 1 (PD-1) blockers. CONCLUSIONS: From our findings that TRIM69 expression was significantly reduced in COAD compared with non-cancer tissues and associated with pathologic stage and metastasis, we conclude that increasing TRIM69 expression and/or activity may help to improve therapeutic outcomes. Accordingly, TRIM69 represents a potentially valuable marker of metastasis and target for adjuvant therapy in COAD.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Humans , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Fluorouracil/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Programmed Cell Death 1 Receptor , Algorithms , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
9.
Acta Biomater ; 170: 360-375, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37611691

ABSTRACT

The clinical application of growth factors such as recombinant human bone morphogenetic protein-2 (rh-BMP-2), for functional bone regeneration remains challenging due to limited in vivo efficacy and adverse effects of previous modalities. To overcome the instability and short half-life of rh-BMP-2 in vivo, we developed a novel osteogenic supplement by fusing a protein transduction domain (PTD) with BMP-2, effectively creating a prodrug of BMP-2. In this study, we first created an improved PTD-BMP-2 formulation using lipid nanoparticle (LNP) micellization, resulting in downsizing from micrometer to nanometer scale and achieving a more even distribution. The micellized PTD-BMP-2 (mPTD-BMP-2) demonstrated improved distribution and aggregation profiles. As a prodrug of BMP-2, mPTD-BMP-2 successfully activated Smad1/5/8 and induced mineralization with osteogenic gene induction in vitro. In vivo pharmacokinetic analysis revealed that mPTD-BMP-2 had a much more stable pharmacokinetic profile than rh-BMP-2, with a 7.5-fold longer half-life. The in vivo BMP-responsive element (BRE) reporter system was also successfully activated by mPTD-BMP-2. In the in vivo rat tibia distraction osteogenesis (DO) model, micro-computed tomography (micro-CT) scan findings indicated that mPTD-BMP-2 significantly increased bone volume, bone surface, axis moment of inertia (MOI), and polar MOI. Furthermore, it increased the expression of osteogenesis-related genes, and induced bone maturation histologically. Based on these findings, mPTD-BMP-2 could be a promising candidate for the next-generation osteogenesis drug to promote new bone formation in DO surgery. STATEMENT OF SIGNIFICANCE: This study introduces micellized bone morphogenetic protein-2 (mPTD-BMP-2), a next-generation osteogenic supplement that combines protein transduction domain (PTD) and nano-sized micelle formulation technique to improve transduction efficiency and stability. The use of PTD represents a novel approach, and our results demonstrate the superiority of mPTD-BMP-2 over rh-BMP-2 in terms of in vivo pharmacokinetic profile and osteogenic potential, particularly in a rat tibial model of distraction osteogenesis. These findings have significant scientific impact and potential clinical applications in the treatment of bone defects that require distraction osteogenesis. By advancing the field of osteogenic supplements, our study has the potential to contribute to the development of more effective treatments for musculoskeletal disorders.


Subject(s)
Osteogenesis, Distraction , Prodrugs , Rats , Humans , Animals , Tibia/metabolism , Osteogenesis, Distraction/methods , Prodrugs/pharmacology , X-Ray Microtomography , Bone Morphogenetic Proteins , Bone Morphogenetic Protein 2/pharmacology , Osteogenesis , Bone Morphogenetic Protein 7/pharmacology
10.
J Acupunct Meridian Stud ; 16(3): 119-126, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37381034

ABSTRACT

This paper presents the Acupuncture Controls gUideline for Reporting humAn Trials and Experiments (ACURATE) checklist, an extension of The Consolidated Standards for Reporting of Trials (CONSORT), which is to be used with STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) when real and sham acupuncture needles are used in a study. This checklist focuses on a clear depiction of sham needling procedures to enhance replicability and enable a precise appraisal. We encourage researchers to use ACURATE in trials and reviews involving sham acupuncture to assist in the reporting of sham acupuncture procedures and related components.


Subject(s)
Acupuncture Therapy , Humans , Needles , Research Design
11.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2138-2145, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282902

ABSTRACT

The powder modification technology was used to improve the powder properties and microstructure of Dioscoreae Rhizoma extract powder, thereby solving the problem of poor solubility of Dioscoreae Rhizoma formula granules. The influence of modifier dosage and grinding time on the solubility of Dioscoreae Rhizoma extract powder was investigated with the solubility as the evaluation index, and the optimal modification process was selected. The particle size, fluidity, specific surface area, and other powder properties of Dioscoreae Rhizoma extract powder before and after modification were compared. At the same time, the changes in the microstructure before and after modification was observed by scanning electron microscope, and the modification principle was explored by combining with multi-light scatterer. The results showed that after adding lactose for powder modification, the solubility of Dioscoreae Rhizoma extract powder was significantly improved. The volume of insoluble substance in the liquid of modified Dioscoreae Rhizoma extract powder obtained by the optimal modification process was reduced from 3.8 mL to 0 mL, and the particles obtained by dry granulation of the modified powder could be completely dissolved within 2 min after being exposed to water, without affecting the content of its indicator components adenosine and allantoin. After modification, the particle size of Dioscoreae Rhizoma extract powder decreased significantly, d_(0.9) decreased from(77.55±4.57) µm to(37.91±0.42) µm, the specific surface area and porosity increased, and the hydrophilicity improved. The main mechanism of improving the solubility of Dioscoreae Rhizoma formula granules was the destruction of the "coating membrane" structure on the surface of starch granules and the dispersion of water-soluble excipients. This study introduced powder modification technology to solve the solubility problem of Dioscoreae Rhizoma formula granules, which provided data support for the improvement of product quality and technical references for the improvement of solubility of other similar varieties.


Subject(s)
Technology, Pharmaceutical , Technology , Powders , Solubility , Plant Extracts , Particle Size
12.
NPJ Biofilms Microbiomes ; 9(1): 32, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270649

ABSTRACT

Currently, considerable attention is focused on exploring the potential relationship between herbal medicine (HM) and the gut microbiome in terms of thermoregulation, which is an important aspect of human health, in modern system biology. However, our knowledge of the mechanisms of HM in thermoregulation is inadequate. Here, we demonstrate that the canonical herbal formula, Yijung-tang (YJT), protects against hypothermia, hyperinflammation, and intestinal microbiota dysbiosis in PTU-induced hypothyroid rats. Notably, these properties were associated with alterations in the gut microbiota and signaling crosstalk between the thermoregulatory and inflammatory mediators in the small intestine and brown adipose tissue (BAT). In contrast to the conventional drug L-thyroxine for curing hypothyroidism, YJT has an efficacy for attenuating systematic inflammatory responses, related with depression in intestinal TLR4 and Nod2/Pglyrp1 signaling pathways. Our findings suggest that YJT could promote BAT thermogenesis and prevent systemic inflammation in PTU-induced hypothyroid rats, which was associated with its prebiotic effect on modulating of the gut microbiota and gene expression with relevance in the enteroendocrine function and innate immune systems. These findings may strengthen the rationale of the microbiota-gut-BAT axis for a paradigm shift to enable holobiont-centric medicine.


Subject(s)
Gastrointestinal Microbiome , Hypothyroidism , Rats , Humans , Animals , Inflammation/drug therapy , Thermogenesis , Hypothyroidism/drug therapy
13.
Integr Med Res ; 12(2): 100955, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37250752

ABSTRACT

This paper presents the Acupuncture Controls gUideline for Reporting humAn Trials and Experiments (ACURATE) checklist, an extension of The Consolidated Standards for Reporting of Trials (CONSORT) and to be used along with STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) when both real and sham acupuncture needles are used in the study. This checklist focuses on a clear depiction of sham needling procedures to enhance replicability and enable a precise appraisal. We encourage researchers to use ACURATE in trials and reviews involving sham acupuncture to assist reporting of sham acupuncture procedures and the related components.

14.
Zhen Ci Yan Jiu ; 48(5): 515-8, 2023 May 25.
Article in Chinese | MEDLINE | ID: mdl-37247867

ABSTRACT

Acupoint Dubi(ST35), one of the commonly used acupuncture points in clinical practice, has long been equated as the acupoint Waixiyan(EX-LE5) in the academic community. By referring to the location of ST35 elaborated in the relevant literature in the ancient and modern times, we analyze the evolution of its position and expound its clinical significance of the correct positioning in the present paper. We think that under posture of knee flexion, the position of ST35 should be between the lower edge of the patella and the upper tip of the tibia, at the midpoint of the patella ligament.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Clinical Relevance , Tibia
15.
Fitoterapia ; 168: 105518, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121408

ABSTRACT

Arisaema cum Bile (Dan Nanxing in Chinese, DNX) have been employed to treat allergic asthma. However, the active components and its mechanisms remain unknown. Therefore, the systematic pharmacology approach-experimental validation was performed in this study. Each 5, 6, and 10 compounds of DNX were obtained by HPLC analysis, TCMSP, and literature report, respectively. A total of 379 targets on all these compounds were acquired from Swiss Target Prediction, and 1973 targets on allergic asthma were predicated. The KEGG enrichment analysis was performed. Furthermore, a rat model of allergic asthma was established and DNX (450 mg/kg, p.o.) was given for 2 weeks. DNX treatment prevented OVA-induced pathological changes in lung cell of irregular arrange and necrotic bronchial epithelial. It also decreased inflammatory cytokines IL-4, IL-5, and IL-13 of serum and BALF, and increased IL-12 and IFN-γ. The main MAPK signaling pathway predicted by KEGG enrichment was verified, as indicated by the decreased protein expression of JNK (p < 0.05 & p < 0.01), ERK (p < 0.05), and p38 MAPK (p < 0.01) in lung tissue. These findings indicated that DNX attenuated OVA-induced allergic asthma mainly by decreasing the MAPK signaling pathway.


Subject(s)
Arisaema , Asthma , Rats , Animals , Mice , Arisaema/metabolism , Bile , Ovalbumin/adverse effects , Network Pharmacology , Molecular Structure , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Cytokines/metabolism , Mice, Inbred BALB C , Disease Models, Animal
16.
Food Sci Biotechnol ; 32(4): 577-587, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36911337

ABSTRACT

In our previous study, black raspberry (BR) reduced the serum levels of trimethylamine-N-oxide and cholesterol in rats fed excessive choline with a high-fat diet (HFC). We hypothesized that gut microbiota could play a crucial role in the production of trimethylamine and microbial metabolites, and BR could influence gut microbial composition. This study aimed to elucidate the role of BR on changes in gut microbiota and microbial metabolites in the rats. The phylogenetic diversity of gut microbiota was reduced in the rats fed HFC, while that in the BR-fed group was restored. The BR supplementation enriched Bifidobacterium and reduced Clostridium cluster XIVa. In the BR-fed group, most cecal bile acids and hippuric acid increased, while serum lithocholic acid was reduced. The BR supplementation upregulated Cyp7a1 and downregulated Srebf2. These results suggest that BR extract may change gut bacterial community, modulate bile acids, and regulate gene expression toward reducing cholesterol. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01267-4.

17.
Front Plant Sci ; 14: 1140509, 2023.
Article in English | MEDLINE | ID: mdl-36860897

ABSTRACT

Ligularia fischeri, a leafy edible plant found in damp shady regions, has been used as an herbal medicine and is also consumed as a horticultural crop. In this study, we investigated the physiological and transcriptomic changes, especially those involved in phenylpropanoid biosynthesis, induced by severe drought stress in L. fischeri plants. A distinguishing characteristic of L. fischeri is a color change from green to purple due to anthocyanin biosynthesis. We chromatographically isolated and identified two anthocyanins and two flavones upregulated by drought stress using liquid chromatography-mass spectrometry and nuclear magnetic resonance analyses in this plant for the first time. In contrast, all types of caffeoylquinic acids (CQAs) and flavonol contents were decreased under drought stress. Further, we performed RNA sequencing to examine the molecular changes in these phenolic compounds at the transcriptome level. In an overview of drought-inducible responses, we identified 2,105 hits for 516 distinct transcripts as drought-responsive genes. Moreover, differentially expressed genes (DEGs) associated with phenylpropanoid biosynthesis accounted for the greatest number of both up- and downregulated DEGs by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. We identified 24 meaningful DEGs based on the regulation of phenylpropanoid biosynthetic genes. Potential drought-responsive genes included upregulated flavone synthase (LfFNS, TRINITY DN31661 c0 g1 i1) and anthocyanin 5-O-glucosyltransferase (LfA5GT1, TRINITY DN782 c0 g1 i1), which could contribute to the high levels of flavones and anthocyanins under drought stress in L. fischeri. In addition, the downregulated shikimate O-hydroxycinnamolytransferase (LfHCT, TRINITY DN31661 c0 g1 i1) and hydroxycinnamoyl-CoA quinate/shikimate transferase (LfHQT4, TRINITY DN15180 c0 g1 i1) genes led to a reduction in CQAs. Only one or two BLASTP hits for LfHCT were obtained for six different Asteraceae species. It is possible that the HCT gene plays a crucial role in CQAs biosynthesis in these species. These findings expand our knowledge of the response mechanisms to drought stress, particularly regarding the regulation of key phenylpropanoid biosynthetic genes in L. fischeri.

18.
J Evid Based Med ; 16(1): 82-90, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36959765

ABSTRACT

OBJECTIVE: To promote better reporting quality regarding sham acupuncture in clinical trials for a precise appraisal of the adequacy of the sham acupuncture procedure. METHODS: A three-stage online Delphi survey was conducted to a group of experts. Items with higher than 80% consensus from the initial checklist were selected as the final candidates. Further discussion among the working group was convened to preclude potential redundancy among the items. RESULTS: A total of 23 experts out of 35 (66%) responded to the Delphi process. The final checklist consists of 23 items in six categories: type of sham acupuncture, details of sham acupuncture manipulation, location of sham acupuncture, treatment regimen, practitioner, and protocol and settings. CONCLUSION: This paper presents the Acupuncture Controls gUideline for Reporting humAn Trials and Experiments (ACURATE) checklist, an extension of The Consolidated Standards for Reporting of Trials (CONSORT) and to be used along with STandards for Reporting Interventions in Clinical Trials of Acupuncture (STRICTA) when sham acupuncture needles are used in the study. This checklist focuses on a clear depiction of sham needling procedures to enhance replicability and enable a precise appraisal. We encourage researchers to use ACURATE in trials and reviews involving sham acupuncture to assist reporting sham acupuncture procedures and the related components.


Subject(s)
Acupuncture Therapy , Humans , Acupuncture Therapy/methods , Checklist , Needles , Research Design
19.
Phytomedicine ; 110: 154634, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36603341

ABSTRACT

BACKGROUNDS: Thioredoxin-interacting protein (TXNIP) plays a pivotal role in regulation of blood glucose homeostasis and is an emerging therapeutic target in diabetes and its complications. Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium wilfordii Hook F, can reduce insulin resistance and improve diabetic complications. PURPOSE: This study aimed to untangle the mechanism of celastrol in ameliorating type 2 diabetes (T2DM) and evaluate its potential benefits as an anti-diabetic agent. METHODS: db/db mice was used to evaluate the hypoglycemic effect of celastrol in vivo; Enzyme-linked immunosorbent assay (ELISA) and 2-NBDG assay were used to detect the effect of celastrol on insulin secretion and glucose uptake in cells; Western blotting, quantitative reverse transcription PCR (RT-qPCR) and immunohistological staining were used to examine effect of celastrol on the expression of TXNIP and the carbohydrate response element-binding protein (ChREBP). Molecular docking, cellular thermal shift assay (CETSA), drug affinity responsive targets stability assay (DARTS) and mass spectrometry were used to test the direct binding between celastrol and ChREBP. Loss- and gain-of-function studies further confirmed the role of ChREBP and TXNIP in celastrol-mediated amelioration of T2DM. RESULTS: Celastrol treatment significantly reduced blood glucose level, body weight and food intake, and improved glucose tolerance in db/db mice. Moreover, celastrol promoted insulin secretion and improved glucose homeostasis. Mechanistically, celastrol directly bound to ChREBP, a primary transcriptional factor upregulating TXNIP expression. By binding to ChREBP, celastrol inhibited its nuclear translocation and promoted its proteasomal degradation, thereby repressing TXNIP transcription and ultimately ameliorating T2DM through breaking the vicious cycle of hyperglycemia deterioration and TXNIP overexpression. CONCLUSION: Celastrol ameliorates T2DM through targeting ChREBP-TXNIP aix. Our study identified ChREBP as a new direct molecular target of celastrol and revealed a novel mechanism for celastrol-mediated amelioration of T2DM, which provides experimental evidence for its possible use in the treatment of T2DM and new insight into diabetes drug development for targeting TXNIP.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Animals , Mice , Carrier Proteins , Diabetes Mellitus, Type 2/drug therapy , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Pentacyclic Triterpenes , Thioredoxins/metabolism
20.
Phytomedicine ; 111: 154656, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36682300

ABSTRACT

BACKGROUD: Bidirectional communications between the gut microbiota and the brain may play a critical role in diabetes-related cognitive impairment. Compound Danshen Dripping Pills (CDDP) treatment has shown remarkable improvement in cognitive impairment in people with type 2 diabetes mellitus (T2DM) in clinical settings, but the underlying mechanisms remain unknown. PURPOSE: An extensive detailed strategy via in vivo functional experiments, transcriptomics, metabolomics, and network pharmacology was adopted to investigate the CDDP-treatment mechanism in diabetic cognitive dysfunction. METHODS: For 12 weeks, KK-Ay mice, a spontaneous T2DM model, were intragastrically administered various doses of CDDP solution or an equivalent volume of water, and the nootropic drug piracetam was orally administered as a positive control. At the 12th week, cognition was assessed using Morris water maze tests and brain magnetic resonance imaging (MRI). Furthermore, transcriptomics, metabolomics, and network pharmacology analyses were applied to reveal novel molecular mechanisms of CDDP-treatment in diabetic cognitive dysfunction of KK-Ay mice, which were then validated using quantitative real-time polymerase chain reaction and Western blot. RESULTS: Here we verified that CDDP can suppress inflammatory response and alleviate the cognitive dysfunction in KK-Ay mice. Also, as demonstrated by 16S rRNA sequencing and short-chain fatty acids (SCFAs) analysis, CDDP attenuated intestinal flora disorder as well as increases of metabolites including butyric acid, hexanoic acid, and isohexic acid. Given the integrated analyses of network pharmacology, transcriptomic, metabolomic data, and molecular biology, the TLR4/MyD88/NF-κB signaling pathway was activated in diabetes, which could be reversed by CDDP. CONCLUSIONS: Our findings demonstrate that CDDP restructures the gut microbiota composition and increased the intestinal SCFAs in KK-Ay mice, which might inhibit neuroinflammation, and thus improve diabetic mice cognitive disorder.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Mice , Animals , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , RNA, Ribosomal, 16S , Cognitive Dysfunction/drug therapy , Signal Transduction , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL