Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34201573

ABSTRACT

A pilot-scale airlift bioreactor (ALBR) system was built and operated continuously for refinery excess sludge (RES) reduction. Combined ALBR and function-enhanced microbes (composed of photosynthetic bacteria and yeast) were integrated into the system. The pilot-scale ALBR was operated for 62 days, and the start-up time was 7 d. Continuous operation showed that the sludge reduction efficiency was more than 56.22%, and the water quality of the effluent was satisfactory. This study focused on investigating the effects of hydraulic retention time (HRT) on the stability of the system and the effect of sludge reduction. Under different HRT conditions of 40, 26.7, 20, and 16 h, the sludge reduction rates reached 56.22%, 73.24%, 74.09%, and 69.64%, respectively. The removal rates of chemical oxygen demand (COD) and total nitrogen (TN) decreased with decreasing HRT, whereas the removal rate of NH4+-N increased. The removal rate of total phosphorus (TP) was approximately 30%. Results indicate that the ALBR and function-enhanced microbe system can reduce sludge and treat sewage simultaneously, and the effluent is up to the national emission standard. Addition of function-enhanced microbes can promote the degradation of petroleum hydrocarbon substances in the sludge, especially alkanes with low carbon numbers. This study suggests that the optimal HRT for the system is 16 h. The total operation cost of the ALBR combined with the function-enhanced microbe system can be reduced by 50% compared with the cost of direct treatment of the RES system.


Subject(s)
Sewage , Waste Disposal, Fluid , Biological Oxygen Demand Analysis , Bioreactors , Nitrogen , Phosphorus
2.
Waste Manag Res ; 34(7): 686-90, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27236165

ABSTRACT

With increasing use of chemical oil displacement agents in tertiary recovery and the application of various demulsifiers for crude oil dehydration, a large amount of aging crude oil containing a high ratio of water is produced, and it is very difficult for processing and utilisation. In this article, we chose aging crude oil samples from a union station in an oilfield in China. Sample composition was analysed to demonstrate that the key of aging crude oil dehydration is the removal of solid impurities. Thus, an efficient method of combining heating and chemical treatments was developed to treat aging crude oil. It includes two steps: The first step is washing of aging crude oil with hot water with sodium dodecylbenzene sulfonate; the second step is chemical demulsification of the above mixture with hydrochloric acid and sodium chloride solution. The result showed that 2.9% of solid impurities and 29.2% of water were removed in the first step; 27.2% of oil, 24.3% of water, and 3.47% of solid impurities in the aging crude oil were recycled in the second step. A total 87.07% of aging crude oil could be solved with this method. The present two-step treatment method can ensure that the dehydration process runs normally and efficiently in the union station, making it a promising method in the recycling of aging crude oil.


Subject(s)
Heating , Petroleum/analysis
3.
Sci Rep ; 6: 19600, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26786765

ABSTRACT

The community diversities of two oil reservoirs with low permeability of 1.81 × 10(-3) and 2.29 × 10(-3) µm(2) in Changqing, China, were investigated using a high throughput sequencing technique to analyze the influence of biostimulation with a nutrient activator on the bacterial communities. These two blocks differed significantly in salinity (average 17,500 vs 40,900 mg/L). A core simulation test was used to evaluate the effectiveness of indigenous microbial-enhanced oil recovery (MEOR). The results indicated that in the two high salinity oil reservoirs, one reservoir having relatively lower salinity level and a narrow salinity range had higher bacterial and phylogenetic diversity. The addition of the nutrient activator increased the diversity of the bacterial community structure and the diversity differences between the two blocks. The results of the core simulation test showed that the bacterial community in the reservoir with a salinity level of 17,500 mg/L did not show significant higher MEOR efficiency compared with the reservoir with 40,900 mg/L i.e. MEOR efficiency of 8.12% vs 6.56% (test p = 0.291 > 0.05). Therefore, salinity levels affected the bacterial diversities in the two low permeability oil blocks remarkably. But the influence of salinity for the MEOR recovery was slightly.


Subject(s)
Bacteria/classification , Biodiversity , Environmental Microbiology , Oil and Gas Fields/microbiology , Petroleum/microbiology , Salinity , Bacteria/genetics , Computational Biology , DNA Barcoding, Taxonomic , DNA, Bacterial , Microbiota , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL