Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Scand J Pain ; 17: 316-324, 2017 10.
Article in English | MEDLINE | ID: mdl-28927908

ABSTRACT

BACKGROUND AND AIMS: Obesity is a significant health concern in the Western world and the presence of comorbid conditions suggests an interaction. The overlapping distributions of chronic pain populations and obesity suggests that an interaction may exist. Poor quality diet (high carbohydrates, saturated fats, omega-6 polyunsaturated fatty acids) can lead to increased adiposity which can activate immune cells independent of the activating effect of the diet components themselves. This dual action can contribute to chronic inflammation that may alter susceptibility to chronic pain and prolong recovery from injury. However, traditional examinations of diet focus on high-fat diets that often contain a single source of fat, that is not reflective of an American diet. Thus, we examined the impact of a novel human-relevant (high-carbohydrate) American diet on measures of pain and inflammation in rats, as well as the effect on recovery and immune cell activation. METHODS: We developed a novel, human-relevant Standard American Diet (SAD) to better model the kilocalorie levels and nutrient sources in an American population. Male and female rats were fed the SAD over the course of 20 weeks prior to persistent inflammatory pain induction with Complete Freund's Adjuvant (CFA). Mechanical and thermal sensitivity were measured weekly. Spontaneous pain, open field locomotion and blood glucose levels were measured during diet consumption. Body composition was assessed at 20 weeks. Following full recovery from CFA-induced hypersensitivity, blood was analyzed for inflammatory mediators and spinal cords were immunohistochemically processed for microglial markers. RESULTS: Chronic consumption of the SAD increased fat mass, decreased lean mass and reduce bone mineral density. SAD-fed rats had increased leptin levels and pro-inflammatory cytokines in peripheral blood serum. Following CFA administration, mechanical sensitivity was assessed and recovery was delayed significantly in SAD-fed animals. Sex differences in the impact of the SAD were also observed. The SAD increased body weight and common T-cell related inflammatory mediators in female, but not male, animals. In males, the SAD had a greater effect on bone mineral density and body composition. Long-term consumption of the SAD resulted in elevated microglial staining in the dorsal horn of the spinal cord, but no sex differences were observed. CONCLUSIONS: We demonstrate the negative effects of an American diet on physiology, behavior and recovery from injury. SAD consumption elevated pro-inflammatory mediators and increased microglial activation in the spinal cord. While there were sex differences in weight gain and inflammation, both sexes showed prolonged recovery from injury. IMPLICATIONS: These data suggest that poor quality diet may increase susceptibility to chronic pain due to persistent peripheral and central immune system activation. Furthermore, consumption of a diet that is high in carbohydrates and omega-6 polyunsaturated fatty acid is likely to lead to protracted recovery following trauma or surgical procedures. These data suggest that recovery of a number of patients eating a poor quality diet may be expedited with a change in diet to one that is healthier.


Subject(s)
Adipose Tissue , Behavior, Animal/physiology , Blood Glucose , Bone Density , Diet, Western/adverse effects , Inflammation , Microglia/immunology , Pain/immunology , Spinal Cord/immunology , Animals , Cytokines/blood , Female , Inflammation/blood , Inflammation/complications , Inflammation/etiology , Inflammation/immunology , Leptin/blood , Male , Rats , Rats, Sprague-Dawley , Sex Factors
2.
Physiol Behav ; 174: 83-88, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28288793

ABSTRACT

Chronic pain affects the lives of millions yearly, but few new treatments are available. Due to decreasing budgets and increasing costs of preclinical research, alternatives are sought with high translatability and low cost. Here we demonstrate the utility of a zebrafish-based model of nociception to serve as a novel screening tool for analgesic drugs. Zebrafish swimming behavior was measured following administration of various algogens including histamine, cinnamaldehyde, mustard oil, acetic acid and complete Freund's adjuvant. All compounds reduce distance traveled, thought to be an expression of nociception. Additionally, the suppression of swimming was attenuated by administration of the common analgesic, morphine. Together these data provide support for the use of zebrafish as a cost-effective and translatable model of nociception.


Subject(s)
Disease Models, Animal , Morphine/pharmacology , Morphine/therapeutic use , Nociception/drug effects , Pain/drug therapy , Acetic Acid/toxicity , Acrolein/analogs & derivatives , Acrolein/toxicity , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/toxicity , Dose-Response Relationship, Drug , Female , Freund's Adjuvant/toxicity , Histamine/toxicity , Histamine Agonists/toxicity , Male , Mustard Plant/toxicity , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pain/chemically induced , Plant Oils/toxicity , Swimming , Zebrafish
3.
Prog Mol Biol Transl Sci ; 131: 435-69, 2015.
Article in English | MEDLINE | ID: mdl-25744682

ABSTRACT

Obesity rates are approaching epidemic proportions and are a significant factor in annual health care costs. In addition to cardiovascular comorbidities, the presence of diabetes and/or chronic pain is extremely high in this population of individuals. It is now well accepted that the cells of the innate (and adaptive) immune system mediate both acute and chronic pain through release of cytokines into the system. In this chapter, we outline the ways in which poor food choices and elevated adipose tissue (body fat) are likely to activate the immune system and increase inflammation and pain. In addition, we explore the ways in which a variety of foods (e.g., broccoli, ginger, grapes, and fish oils) may have anti-inflammatory effects via their direct action on cells in the immune system and on the subsequent release of inflammatory cytokines. Some foods (green tea, ginger, and broccoli) have been found to antagonize specific cell surface receptors, whereas others (grapes, soy proteins, tomatoes and ginseng) appear to reduce nuclear translocation of the major transcription factor NFκB, thereby reducing production of inflammatory cytokines. Together, we provide data in support of the use of diet interventions to reduce pain and inflammation in patients suffering from chronic pain or other inflammation-mediated disorders.


Subject(s)
Diet , Immune System/immunology , Pain/immunology , Animals , Humans , Inflammation/pathology , Obesity/pathology , Pain/drug therapy , Plant Extracts/therapeutic use
4.
Nat Neurosci ; 14(12): 1569-73, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-22019732

ABSTRACT

Quantitative trait locus mapping of chemical/inflammatory pain in the mouse identified the Avpr1a gene, which encodes the vasopressin-1A receptor (V1AR), as being responsible for strain-dependent pain sensitivity to formalin and capsaicin. A genetic association study in humans revealed the influence of a single nucleotide polymorphism (rs10877969) in AVPR1A on capsaicin pain levels, but only in male subjects reporting stress at the time of testing. The analgesic efficacy of the vasopressin analog desmopressin revealed a similar interaction between the drug and acute stress, as desmopressin inhibition of capsaicin pain was only observed in nonstressed subjects. Additional experiments in mice confirmed the male-specific interaction of V1AR and stress, leading to the conclusion that vasopressin activates endogenous analgesia mechanisms unless they have already been activated by stress. These findings represent, to the best of our knowledge, the first explicit demonstration of analgesic efficacy depending on the emotional state of the recipient, and illustrate the heuristic power of a bench-to-bedside-to-bench translational strategy.


Subject(s)
Analgesics/therapeutic use , Pain Threshold/drug effects , Pain/drug therapy , Pain/genetics , Pain/physiopathology , Vasopressins/therapeutic use , Animals , Animals, Newborn , Capsaicin/adverse effects , Deamino Arginine Vasopressin/therapeutic use , Disease Models, Animal , Female , Genetic Association Studies , Habituation, Psychophysiologic/drug effects , Habituation, Psychophysiologic/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Weight , Pain/chemically induced , Pain Measurement/drug effects , Pain Measurement/methods , Pain Threshold/physiology , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Receptors, Vasopressin/deficiency , Receptors, Vasopressin/genetics , Sex Factors , Stress, Psychological/genetics , Stress, Psychological/physiopathology
5.
Neuropsychopharmacology ; 32(11): 2290-300, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17314916

ABSTRACT

It has been demonstrated that high-dose methadone maintenance is efficacious in reducing cocaine abuse in opioid-dependent individuals, but it is not clear whether this is caused by an action of methadone on the direct reinforcing properties of cocaine or on cocaine seeking. Also, it is not clear whether high-dose methadone maintenance may induce behavioral side effects, which could limit its clinical use. Here, we report that high-dose methadone maintenance (20-40 mg/kg/day) does not reduce, and even enhances cocaine (10-30 mg/kg, i.p.)-induced elevation in dopamine concentration in the ventral striatum measured by in vivo microdialysis. In parallel, however, rats maintained on high-dose methadone (30 mg/kg/day) seek and consume significantly less cocaine than controls when tested for intravenous cocaine (0.5 mg/kg/infusion) self-administration on a progressive ratio schedule of reinforcement. This reduction in cocaine self-administration does not result from impaired sensory-motor functioning as rats maintained on high-dose methadone show normal locomotor activity. Furthermore, the reduction in responding for cocaine does not seem to result from general behavioral deficits as male rats maintained on high methadone doses respond normally to palatable food and thermal pain, although their sexual responses to receptive females are greatly suppressed. Taken together, these results from studies in rats support the usefulness of larger doses of methadone to reduce severe cocaine abuse in opioid-dependent individuals and possibly in the management of pure-cocaine addiction.


Subject(s)
Behavior, Animal/drug effects , Cocaine/administration & dosage , Dopamine Uptake Inhibitors/administration & dosage , Methadone/pharmacology , Narcotics/pharmacology , Reinforcement, Psychology , Analysis of Variance , Animals , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Eating/drug effects , Female , Male , Microdialysis/methods , Motor Activity/drug effects , Ovariectomy/methods , Rats , Reinforcement Schedule , Self Administration , Sex Factors , Sexual Behavior, Animal/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL