Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Microbiol Rep ; 13(6): 830-840, 2021 12.
Article in English | MEDLINE | ID: mdl-34672103

ABSTRACT

Alkanes are ubiquitous in marine ecosystems and originate from diverse sources ranging from natural oil seeps to anthropogenic inputs and biogenic production by cyanobacteria. Enzymes that degrade cyanobacterial alkanes (typically C15-C17 compounds) such as the alkane monooxygenase (AlkB) are widespread, but it remains unclear whether or not AlkB variants exist that specialize in degradation of crude oil from natural or accidental spills, a much more complex mixture of long-chain hydrocarbons. In the present study, large-scale analysis of available metagenomic and genomic data from the Gulf of Mexico (GoM) oil spill revealed a novel, divergent AlkB clade recovered from genomes with no cultured representatives that was dramatically increased in abundance in crude-oil impacted ecosystems. In contrast, the AlkB clades associated with biotransformation of cyanobacterial alkanes belonged to 'canonical' or hydrocarbonoclastic clades, and based on metatranscriptomics data and compared to the novel clade, were much more weakly expressed during crude oil biodegradation in laboratory mesocosms. The absence of this divergent AlkB clade in metagenomes of uncontaminated samples from the global ocean survey but not from the GoM as well as its frequent horizontal gene transfer indicated a priming effect of the Gulf for crude oil biodegradation likely driven by natural oil seeps.


Subject(s)
Biodegradation, Environmental , Cyanobacteria , Cytochrome P-450 CYP4A , Petroleum , Alkanes/metabolism , Cyanobacteria/enzymology , Cytochrome P-450 CYP4A/genetics , Cytochrome P-450 CYP4A/metabolism , Ecosystem , Petroleum/metabolism , Phylogeny
2.
Environ Sci Technol ; 54(16): 10088-10099, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32667785

ABSTRACT

Crude oil buried in intertidal sands may be exposed to alternating oxic and anoxic conditions but the effect of this tidally induced biogeochemical oscillation remains poorly understood, limiting the effectiveness of remediation and managing efforts after oil spills. Here, we used a combination of metatranscriptomics and genome-resolved metagenomics to study microbial activities in oil-contaminated sediments during oxic-anoxic cycles in laboratory chambers that closely emulated in situ conditions. Approximately 5-fold higher reductions in the total petroleum hydrocarbons were observed in the oxic as compared to the anoxic phases with a relatively constant ratio between aerobic and anaerobic oil decomposition rates even after prolonged anoxic conditions. Metatranscriptomics analysis indicated that the oxic phases promoted oil biodegradation in subsequent anoxic phases by microbially mediated reoxidation of alternative electron acceptors like sulfide and by providing degradation-limiting nitrogen through biological nitrogen fixation. Most population genomes reconstructed from the mesocosm samples represented uncultured taxa and were present typically as members of the rare biosphere in metagenomic data from uncontaminated field samples, implying that the intertidal communities are adapted to changes in redox conditions. Collectively, these results have important implications for enhancing oil spill remediation efforts in beach sands and coastal sediments and underscore the role of uncultured taxa in such efforts.


Subject(s)
Petroleum Pollution , Petroleum , Biodegradation, Environmental , Geologic Sediments , Hydrocarbons , Petroleum Pollution/analysis
3.
ISME J ; 13(8): 2129-2134, 2019 08.
Article in English | MEDLINE | ID: mdl-30952995

ABSTRACT

Modeling crude-oil biodegradation in sediments remains a challenge due in part to the lack of appropriate model organisms. Here we report the metagenome-guided isolation of a novel organism that represents a phylogenetically narrow (>97% 16S rRNA gene identity) group of previously uncharacterized, crude-oil degraders. Analysis of available sequence data showed that these organisms are highly abundant in oiled sediments of coastal marine ecosystems across the world, often comprising ~30% of the total community, and virtually absent in pristine sediments or seawater. The isolate genome encodes functional nitrogen fixation and hydrocarbon degradation genes together with putative genes for biosurfactant production that apparently facilitate growth in the typically nitrogen-limited, oiled environment. Comparisons to available genomes revealed that this isolate represents a novel genus within the Gammaproteobacteria, for which we propose the provisional name "Candidatus Macondimonas diazotrophica" gen. nov., sp. nov. "Ca. M. diazotrophica" appears to play a key ecological role in the response to oil spills around the globe and could be a promising model organism for studying ecophysiological responses to oil spills.


Subject(s)
Gammaproteobacteria/genetics , Geologic Sediments/microbiology , Hydrocarbons/metabolism , Metagenome , Petroleum/metabolism , Biodegradation, Environmental , DNA, Bacterial/genetics , Ecosystem , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/physiology , Geologic Sediments/chemistry , Nitrogen Fixation , Petroleum Pollution , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL