Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nutrients ; 14(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297114

ABSTRACT

Diet is a modifiable risk factor for common chronic diseases and mental health disorders, and its effects are under partial genetic control. To estimate the impact of diet on individual health, most epidemiological and genetic studies have focused on individual aspects of dietary intake. However, analysing individual food groups in isolation does not capture the complexity of the whole diet pattern. Dietary indices enable a holistic estimation of diet and account for the intercorrelations between food and nutrients. In this study we performed the first ever genome-wide association study (GWA) including 173,701 individuals from the UK Biobank to identify genetic variants associated with the Dietary Approaches to Stop Hypertension (DASH) diet. DASH was calculated using the 24 h-recall questionnaire collected by UK Biobank. The GWA was performed using a linear mixed model implemented in BOLT-LMM. We identified seven independent single-nucleotide polymorphisms (SNPs) associated with DASH. Significant genetic correlations were observed between DASH and several educational traits with a significant enrichment for genes involved in the AMP-dependent protein kinase (AMPK) activation that controls the appetite by regulating the signalling in the hypothalamus. The colocalization analysis implicates genes involved in body mass index (BMI)/obesity and neuroticism (ARPP21, RP11-62H7.2, MFHAS1, RHEBL1). The Mendelian randomisation analysis suggested that increased DASH score, which reflect a healthy diet style, is causal of lower glucose, and insulin levels. These findings further our knowledge of the pathways underlying the relationship between diet and health outcomes. They may have significant implications for global public health and provide future dietary recommendations for the prevention of common chronic diseases.


Subject(s)
Dietary Approaches To Stop Hypertension , Hypertension , Insulins , Humans , Genome-Wide Association Study , AMP-Activated Protein Kinases , Biological Specimen Banks , Hypertension/genetics , Hypertension/prevention & control , Diet , Glucose , United Kingdom , Adenosine Monophosphate , DNA-Binding Proteins , Oncogene Proteins , Cell Cycle Proteins
2.
Nutr J ; 21(1): 13, 2022 02 27.
Article in English | MEDLINE | ID: mdl-35220977

ABSTRACT

BACKGROUND: Estimated food records (EFR) are a common dietary assessment method. This investigation aimed to; (1) define the reporting quality of the EFR, (2) characterise acute dietary intake and eating behaviours, (3) describe diet heritability. METHODS: A total of 1974 one-day EFR were collected from 1858 participants in the TwinsUK cohort between 2012 and 2017. EFR were assessed using a six-point scoring system to determine reporting quality. The frequency and co-occurrence of food items was examined using word clouds and co-occurrence networks. The impact of eating behaviours on weight, BMI and nutrient intake were explored using mixed-effect linear regression models. Finally, diet heritability was estimated using ACE modelling. RESULTS: We observed that 75% of EFR are of acceptable reporting quality (score > 5). Black tea and semi-skimmed milk were the most consumed items, on an individual basis (respectively 8.27, 6.25%) and paired (0.21%) as co-occurring items. Breakfast consumption had a significantly (p = 5.99 × 10- 7) greater impact on energy (kcal) (mean 1874.67 (±SD 532.42)) than skipping breakfast (1700.45 (±SD 620.98)), however only length of eating window was significantly associated with body weight (kg) (effect size 0.21 (±SD 0.10), p = 0.05) and BMI (effect size 0.08 (±SD 0.04), p = 0.04) after adjustment for relevant covariates. Lastly, we reported that both length of eating window (h2 = 33%, CI 0.24; 0.41), and breakfast consumption (h2 = 11%, CI 0.02; 0.21) were weakly heritable. CONCLUSIONS: EFR describing acute dietary intake allow for eating behaviour characterisation and can supplement habitual diet intake assessments. Novel findings of heritability warrant further investigation.


Subject(s)
Eating , Feeding Behavior , Diet , Eating/genetics , Energy Intake , Humans , United Kingdom
3.
Lancet Child Adolesc Health ; 5(10): 708-718, 2021 10.
Article in English | MEDLINE | ID: mdl-34358472

ABSTRACT

BACKGROUND: In children, SARS-CoV-2 infection is usually asymptomatic or causes a mild illness of short duration. Persistent illness has been reported; however, its prevalence and characteristics are unclear. We aimed to determine illness duration and characteristics in symptomatic UK school-aged children tested for SARS-CoV-2 using data from the COVID Symptom Study, one of the largest UK citizen participatory epidemiological studies to date. METHODS: In this prospective cohort study, data from UK school-aged children (age 5-17 years) were reported by an adult proxy. Participants were voluntary, and used a mobile application (app) launched jointly by Zoe Limited and King's College London. Illness duration and symptom prevalence, duration, and burden were analysed for children testing positive for SARS-CoV-2 for whom illness duration could be determined, and were assessed overall and for younger (age 5-11 years) and older (age 12-17 years) groups. Children with longer than 1 week between symptomatic reports on the app were excluded from analysis. Data from symptomatic children testing negative for SARS-CoV-2, matched 1:1 for age, gender, and week of testing, were also assessed. FINDINGS: 258 790 children aged 5-17 years were reported by an adult proxy between March 24, 2020, and Feb 22, 2021, of whom 75 529 had valid test results for SARS-CoV-2. 1734 children (588 younger and 1146 older children) had a positive SARS-CoV-2 test result and calculable illness duration within the study timeframe (illness onset between Sept 1, 2020, and Jan 24, 2021). The most common symptoms were headache (1079 [62·2%] of 1734 children), and fatigue (954 [55·0%] of 1734 children). Median illness duration was 6 days (IQR 3-11) versus 3 days (2-7) in children testing negative, and was positively associated with age (Spearman's rank-order rs 0·19, p<0·0001). Median illness duration was longer for older children (7 days, IQR 3-12) than younger children (5 days, 2-9). 77 (4·4%) of 1734 children had illness duration of at least 28 days, more commonly in older than younger children (59 [5·1%] of 1146 older children vs 18 [3·1%] of 588 younger children; p=0·046). The commonest symptoms experienced by these children during the first 4 weeks of illness were fatigue (65 [84·4%] of 77), headache (60 [77·9%] of 77), and anosmia (60 [77·9%] of 77); however, after day 28 the symptom burden was low (median 2 symptoms, IQR 1-4) compared with the first week of illness (median 6 symptoms, 4-8). Only 25 (1·8%) of 1379 children experienced symptoms for at least 56 days. Few children (15 children, 0·9%) in the negatively tested cohort had symptoms for at least 28 days; however, these children experienced greater symptom burden throughout their illness (9 symptoms, IQR 7·7-11·0 vs 8, 6-9) and after day 28 (5 symptoms, IQR 1·5-6·5 vs 2, 1-4) than did children who tested positive for SARS-CoV-2. INTERPRETATION: Although COVID-19 in children is usually of short duration with low symptom burden, some children with COVID-19 experience prolonged illness duration. Reassuringly, symptom burden in these children did not increase with time, and most recovered by day 56. Some children who tested negative for SARS-CoV-2 also had persistent and burdensome illness. A holistic approach for all children with persistent illness during the pandemic is appropriate. FUNDING: Zoe Limited, UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, and Alzheimer's Society.


Subject(s)
COVID-19/epidemiology , COVID-19/pathology , SARS-CoV-2/isolation & purification , Adolescent , COVID-19/diagnosis , COVID-19/virology , COVID-19 Testing , Child , Child, Preschool , Citizen Science , Cohort Studies , Cost of Illness , Female , Humans , Male , Prospective Studies , SARS-CoV-2/pathogenicity , United Kingdom
4.
BMJ Nutr Prev Health ; 4(1): 149-157, 2021.
Article in English | MEDLINE | ID: mdl-34308122

ABSTRACT

OBJECTIVES: Dietary supplements may ameliorate SARS-CoV-2 infection, although scientific evidence to support such a role is lacking. We investigated whether users of the COVID-19 Symptom Study app who regularly took dietary supplements were less likely to test positive for SARS-CoV-2 infection. DESIGN: App-based community survey. SETTING: 445 850 subscribers of an app that was launched to enable self-reported information related to SARS-CoV-2 infection for use in the general population in the UK (n=372 720), the USA (n=45 757) and Sweden (n=27 373). MAIN EXPOSURE: Self-reported regular dietary supplement usage (constant use during previous 3 months) in the first waves of the pandemic up to 31 July 2020. MAIN OUTCOME MEASURES: SARS-CoV-2 infection confirmed by viral RNA reverse transcriptase PCR test or serology test before 31 July 2020. RESULTS: In 372 720 UK participants (175 652 supplement users and 197 068 non-users), those taking probiotics, omega-3 fatty acids, multivitamins or vitamin D had a lower risk of SARS-CoV-2 infection by 14% (95% CI (8% to 19%)), 12% (95% CI (8% to 16%)), 13% (95% CI (10% to 16%)) and 9% (95% CI (6% to 12%)), respectively, after adjusting for potential confounders. No effect was observed for those taking vitamin C, zinc or garlic supplements. On stratification by sex, age and body mass index (BMI), the protective associations in individuals taking probiotics, omega-3 fatty acids, multivitamins and vitamin D were observed in females across all ages and BMI groups, but were not seen in men. The same overall pattern of association was observed in both the US and Swedish cohorts. CONCLUSION: In women, we observed a modest but significant association between use of probiotics, omega-3 fatty acid, multivitamin or vitamin D supplements and lower risk of testing positive for SARS-CoV-2. We found no clear benefits for men nor any effect of vitamin C, garlic or zinc. Randomised controlled trials are required to confirm these observational findings before any therapeutic recommendations can be made.

5.
Gut Microbes ; 13(1): 1-11, 2021.
Article in English | MEDLINE | ID: mdl-33382352

ABSTRACT

Prebiotics are compounds in food that benefit health via affecting the gut microbiome. Omega-3 fatty acids have been associated with differences in gut microbiome composition and are widely accepted to have health benefits, although recent large trials have been inconclusive. We carried out a 6-week dietary intervention comparing the effects of daily supplementation with 500 mg of omega-3 versus 20 g of a well-characterized prebiotic, inulin. Inulin supplementation resulted in large increases in Bifidobacterium and Lachnospiraceae. In contrast, omega-3 supplementation resulted in significant increases in Coprococcus spp. and Bacteroides spp, and significant decreases in the fatty-liver associated Collinsella spp. On the other hand, similar to the results with inulin supplementation which resulted in significant increases in butyrate, iso-valerate, and iso-butyrate (p < .004), omega-3 supplementation resulted in significant increases in iso-butyrate and isovalerate (p < .002) and nearly significant increases in butyrate (p < .053). Coprococcus, which was significantly increased post-supplementation with omega-3, was found to be positively associated with iso-butyric acid (Beta (SE) = 0.69 (0.02), P = 1.4 x 10-3) and negatively associated with triglyceride-rich lipoproteins such as VLDL (Beta (SE) = -0.381 (0.01), P = .001) and VLDL-TG (Beta (SE) = -0.372 (0.04), P = .001) after adjusting for confounders. Dietary omega-3 alters gut microbiome composition and some of its cardiovascular effects appear to be potentially mediated by its effect on gut microbial fermentation products indicating that it may be a prebiotic nutrient.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3/pharmacology , Prebiotics , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Body Mass Index , Fatty Acids/blood , Fatty Acids, Omega-3/administration & dosage , Female , Gastrointestinal Microbiome/drug effects , Humans , Inulin/administration & dosage , Inulin/pharmacology , Lipids/blood , Male , Middle Aged , Prebiotics/administration & dosage
6.
Eur J Cancer ; 138: 149-155, 2020 10.
Article in English | MEDLINE | ID: mdl-32889369

ABSTRACT

Immune-checkpoint inhibitors (ICIs) have revolutionised the therapeutic landscape for multiple malignancies and the health of the gut microbiome (GM) is strongly linked with therapeutic responses to ICI. This review explores the implications of diet and medication on the GM for patients receiving ICI. Clinical trials are underway to explore the impact of factors such as faecal microbiota transfer, probiotics, prebiotics, bacteria consortia and a number of dietary interventions on patients receiving ICI. Randomised controlled trials are lacking, and inferences are currently based on short-term clinical and observational studies. Antibiotics should be avoided before ICI initiation, and depending on prospective data, future consideration may be given to temporary delay of initiation of non-urgent ICI if patient has had broad spectrum antibiotics within 1 month of planned treatment initiation. Proton pump inhibitor use should be discontinued when not clearly indicated and potential switch to a histamine H2-receptor antagonist considered. Patients should be advised to minimise animal meat intake and maximise plants, aiming to consume ≥30 plant types weekly. A high fibre intake (>30 g/day) has been seen to be beneficial in increasing the chance of ICI response. Fermented foods may have a beneficial effect on the GM and should be introduced where possible. Ideally, all patients should be referred to a nutritionist or dietician with knowledge of GM before commencing ICI.


Subject(s)
Bacteria/drug effects , Diet , Gastrointestinal Microbiome/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Neoplasms/drug therapy , Animals , Anti-Bacterial Agents/adverse effects , Bacteria/immunology , Diet/adverse effects , Dietary Supplements , Dysbiosis , Fecal Microbiota Transplantation , Host-Pathogen Interactions , Humans , Immune Checkpoint Inhibitors/adverse effects , Immunotherapy/adverse effects , Neoplasms/immunology , Neoplasms/microbiology , Nutritional Status , Proton Pump Inhibitors/adverse effects
8.
JCI Insight ; 4(23)2019 12 05.
Article in English | MEDLINE | ID: mdl-31600170

ABSTRACT

BACKGROUNDThe presence of an early repolarization pattern (ERP) on the surface ECG is associated with risk of ventricular fibrillation and sudden cardiac death. Family studies have shown that ERP is a highly heritable trait, but molecular genetic determinants are unknown.METHODSTo identify genetic susceptibility loci for ERP, we performed a GWAS and meta-analysis in 2,181 cases and 23,641 controls of European ancestry.RESULTSWe identified a genome-wide significant (P < 5 × 10-8) locus in the potassium voltage-gated channel subfamily D member 3 (KCND3) gene that was successfully replicated in additional 1,124 cases and 12,510 controls. A subsequent joint meta-analysis of the discovery and replication cohorts identified rs1545300 as the lead SNP at the KCND3 locus (OR 0.82 per minor T allele, P = 7.7 × 10-12) but did not reveal additional loci. Colocalization analyses indicate causal effects of KCND3 gene expression levels on ERP in both cardiac left ventricle and tibial artery.CONCLUSIONSIn this study, we identified for the first time to our knowledge a genome-wide significant association of a genetic variant with ERP. Our findings of a locus in the KCND3 gene provide insights not only into the genetic determinants but also into the pathophysiological mechanism of ERP, discovering a promising candidate for functional studies.FUNDINGThis project was funded by the German Center for Cardiovascular Research (DZHK Shared Expertise SE081 - STATS). For detailed funding information per study, see the Supplemental Acknowledgments.


Subject(s)
Electrocardiography/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Shal Potassium Channels/genetics , Ventricular Fibrillation/genetics , Alleles , Death, Sudden, Cardiac , Female , Genetic Loci , Genotype , Heart Ventricles , Humans , Male , Polymorphism, Single Nucleotide , Transcriptome , White People/genetics
9.
Sci Rep ; 7(1): 11079, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894110

ABSTRACT

Omega-3 fatty acids may influence human physiological parameters in part by affecting the gut microbiome. The aim of this study was to investigate the links between omega-3 fatty acids, gut microbiome diversity and composition and faecal metabolomic profiles in middle aged and elderly women. We analysed data from 876 twins with 16S microbiome data and DHA, total omega-3, and other circulating fatty acids. Estimated food intake of omega-3 fatty acids were obtained from food frequency questionnaires. Both total omega-3and DHA serum levels were significantly correlated with microbiome alpha diversity (Shannon index) after adjusting for confounders (DHA Beta(SE) = 0.13(0.04), P = 0.0006 total omega-3: 0.13(0.04), P = 0.001). These associations remained significant after adjusting for dietary fibre intake. We found even stronger associations between DHA and 38 operational taxonomic units (OTUs), the strongest ones being with OTUs from the Lachnospiraceae family (Beta(SE) = 0.13(0.03), P = 8 × 10-7). Some of the associations with gut bacterial OTUs appear to be mediated by the abundance of the faecal metabolite N-carbamylglutamate. Our data indicate a link between omega-3 circulating levels/intake and microbiome composition independent of dietary fibre intake, particularly with bacteria of the Lachnospiraceae family. These data suggest the potential use of omega-3 supplementation to improve the microbiome composition.


Subject(s)
Biodiversity , Fatty Acids, Omega-3/metabolism , Gastrointestinal Microbiome , Glutamates/biosynthesis , Aged , Aged, 80 and over , Biomarkers , Docosahexaenoic Acids/metabolism , Fatty Acids, Omega-6/metabolism , Feces/microbiology , Female , Humans , Metabolome , Metabolomics/methods , Middle Aged
11.
Hum Mol Genet ; 25(24): 5472-5482, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27702941

ABSTRACT

Caffeine is the most widely consumed psychoactive substance in the world and presents with wide interindividual variation in metabolism. This variation may modify potential adverse or beneficial effects of caffeine on health. We conducted a genome-wide association study (GWAS) of plasma caffeine, paraxanthine, theophylline, theobromine and paraxanthine/caffeine ratio among up to 9,876 individuals of European ancestry from six population-based studies. A single SNP at 6p23 (near CD83) and several SNPs at 7p21 (near AHR), 15q24 (near CYP1A2) and 19q13.2 (near CYP2A6) met GW-significance (P < 5 × 10-8) and were associated with one or more metabolites. Variants at 7p21 and 15q24 associated with higher plasma caffeine and lower plasma paraxanthine/caffeine (slow caffeine metabolism) were previously associated with lower coffee and caffeine consumption behavior in GWAS. Variants at 19q13.2 associated with higher plasma paraxanthine/caffeine (slow paraxanthine metabolism) were also associated with lower coffee consumption in the UK Biobank (n = 94 343, P < 1.0 × 10-6). Variants at 2p24 (in GCKR), 4q22 (in ABCG2) and 7q11.23 (near POR) that were previously associated with coffee consumption in GWAS were nominally associated with plasma caffeine or its metabolites. Taken together, we have identified genetic factors contributing to variation in caffeine metabolism and confirm an important modulating role of systemic caffeine levels in dietary caffeine consumption behavior. Moreover, candidate genes identified encode proteins with important clinical functions that extend beyond caffeine metabolism.


Subject(s)
Antigens, CD/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Caffeine/genetics , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP2A6/genetics , Immunoglobulins/genetics , Membrane Glycoproteins/genetics , Receptors, Aryl Hydrocarbon/genetics , Caffeine/blood , Coffee/genetics , Coffee/metabolism , Cytochrome P-450 CYP1A2/metabolism , Female , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Theobromine/blood , Theophylline/blood , White People , CD83 Antigen
12.
PLoS One ; 11(6): e0158568, 2016.
Article in English | MEDLINE | ID: mdl-27355821

ABSTRACT

Using dietary biomarkers in nutritional epidemiological studies may better capture exposure and improve the level at which diet-disease associations can be established and explored. Here, we aimed to identify and evaluate reproducibility of novel biomarkers of reported habitual food intake using targeted and non-targeted metabolomic blood profiling in a large twin cohort. Reported intakes of 71 food groups, determined by FFQ, were assessed against 601 fasting blood metabolites in over 3500 adult female twins from the TwinsUK cohort. For each metabolite, linear regression analysis was undertaken in the discovery group (excluding MZ twin pairs discordant [≥1 SD apart] for food group intake) with each food group as a predictor adjusting for age, batch effects, BMI, family relatedness and multiple testing (1.17x10-6 = 0.05/[71 food groups x 601 detected metabolites]). Significant results were then replicated (non-targeted: P<0.05; targeted: same direction) in the MZ discordant twin group and results from both analyses meta-analyzed. We identified and replicated 180 significant associations with 39 food groups (P<1.17x10-6), overall consisting of 106 different metabolites (74 known and 32 unknown), including 73 novel associations. In particular we identified trans-4-hydroxyproline as a potential marker of red meat intake (0.075[0.009]; P = 1.08x10-17), ergothioneine as a marker of mushroom consumption (0.181[0.019]; P = 5.93x10-22), and three potential markers of fruit consumption (top association: apple and pears): including metabolites derived from gut bacterial transformation of phenolic compounds, 3-phenylpropionate (0.024[0.004]; P = 1.24x10-8) and indolepropionate (0.026[0.004]; P = 2.39x10-9), and threitol (0.033[0.003]; P = 1.69x10-21). With the largest nutritional metabolomics dataset to date, we have identified 73 novel candidate biomarkers of food intake for potential use in nutritional epidemiological studies. We compiled our findings into the DietMetab database (http://www.twinsuk.ac.uk/dietmetab-data/), an online tool to investigate our top associations.


Subject(s)
Biomarkers/blood , Diet , Eating , Metabolome , Adult , Blood Chemical Analysis , Body Mass Index , Coffee , Cohort Studies , Feeding Behavior , Female , Humans , Linear Models , Phenol , Quality Control , Red Meat , Seafood , Self Report , Surveys and Questionnaires , Tea , Twins, Monozygotic , United Kingdom , Vegetables
13.
Ophthalmology ; 123(6): 1237-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27016950

ABSTRACT

PURPOSE: To determine the heritability of nuclear cataract progression and to explore prospectively the effect of dietary micronutrients on the progression of nuclear cataract. DESIGN: Prospective cohort study. PARTICIPANTS: Cross-sectional nuclear cataract and dietary measurements were available for 2054 white female twins from the TwinsUK cohort. Follow-up cataract measurements were available for 324 of the twins (151 monozygotic and 173 dizygotic twins). METHODS: Nuclear cataract was measured using a quantitative measure of nuclear density obtained from digital Scheimpflug images. Dietary data were available from EPIC food frequency questionnaires. Heritability was modeled using maximum likelihood structural equation twin modeling. Association between nuclear cataract change and micronutrients was investigated using linear and multinomial regression analysis. The mean interval between baseline and follow-up examination was 9.4 years. MAIN OUTCOME MEASURES: Nuclear cataract progression. RESULTS: The best-fitting model estimated that the heritability of nuclear cataract progression was 35% (95% confidence interval [CI], 13-54), and individual environmental factors explained the remaining 65% (95% CI, 46-87) of variance. Dietary vitamin C was protective against both nuclear cataract at baseline and nuclear cataract progression (ß = -0.0002, P = 0.01 and ß = -0.001, P = 0.03, respectively), whereas manganese and intake of micronutrient supplements were protective against nuclear cataract at baseline only (ß = -0.009, P = 0.03 and ß = -0.03, P = 0.01, respectively). CONCLUSIONS: Genetic factors explained 35% of the variation in progression of nuclear cataract over a 10-year period. Environmental factors accounted for the remaining variance, and in particular, dietary vitamin C protected against cataract progression assessed approximately 10 years after baseline.


Subject(s)
Cataract/congenital , Diet , Diseases in Twins/genetics , Quantitative Trait, Heritable , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Aged , Aged, 80 and over , Cataract/diagnosis , Cataract/genetics , Cross-Sectional Studies , Diet Surveys , Disease Progression , Feeding Behavior , Female , Genetic Predisposition to Disease , Humans , Middle Aged , Prospective Studies , White People/genetics
14.
J Am Soc Nephrol ; 27(4): 1175-88, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26449609

ABSTRACT

Small molecules are extensively metabolized and cleared by the kidney. Changes in serum metabolite concentrations may result from impaired kidney function and can be used to estimate filtration (e.g., the established marker creatinine) or may precede and potentially contribute to CKD development. Here, we applied a nontargeted metabolomics approach using gas and liquid chromatography coupled to mass spectrometry to quantify 493 small molecules in human serum. The associations of these molecules with GFR estimated on the basis of creatinine (eGFRcr) and cystatin C levels were assessed in ≤1735 participants in the KORA F4 study, followed by replication in 1164 individuals in the TwinsUK registry. After correction for multiple testing, 54 replicated metabolites significantly associated with eGFRcr, and six of these showed pairwise correlation (r≥0.50) with established kidney function measures: C-mannosyltryptophan, pseudouridine, N-acetylalanine, erythronate, myo-inositol, and N-acetylcarnosine. Higher C-mannosyltryptophan, pseudouridine, and O-sulfo-L-tyrosine concentrations associated with incident CKD (eGFRcr <60 ml/min per 1.73 m(2)) in the KORA F4 study. In contrast with serum creatinine, C-mannosyltryptophan and pseudouridine concentrations showed little dependence on sex. Furthermore, correlation with measured GFR in 200 participants in the AASK study was 0.78 for both C-mannosyltryptophan and pseudouridine concentration, and highly significant associations of both metabolites with incident ESRD disappeared upon adjustment for measured GFR. Thus, these molecules may be alternative or complementary markers of kidney function. In conclusion, our study provides a comprehensive list of kidney function-associated metabolites and highlights potential novel filtration markers that may help to improve the estimation of GFR.


Subject(s)
Metabolome , Renal Insufficiency, Chronic/metabolism , Cross-Sectional Studies , Female , Genome-Wide Association Study , Glomerular Filtration Rate , Humans , Male , Metabolome/genetics , Middle Aged , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/physiopathology
15.
J Bone Miner Res ; 31(2): 317-25, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26288012

ABSTRACT

Age-related loss of skeletal muscle mass and strength are risk factors for sarcopenia, osteoporosis, falls, fractures, frailty, and mortality. Dietary magnesium (Mg) could play a role in prevention of age-related loss of skeletal muscle mass, power, and strength directly through physiological mechanisms or indirectly through an impact on chronic low-grade inflammation, itself a risk factor for loss of skeletal muscle mass and strength. In a cross-sectional study of 2570 women aged 18 to 79 years, we examined associations between intakes of Mg, estimated using a food-frequency questionnaire (FFQ), dual-energy X-ray absorptiometry (DXA)-derived measures of muscle mass (fat-free mass as a percentage of body weight [FFM%], fat-free mass index [FFMI, kg/m(2)]), leg explosive power (LEP), and grip strength (n = 949 only). We also examined associations between circulating hs-CRP (C-reactive protein) and muscle mass and LEP, and explored the potential attenuation of these relationships by Mg. We compared our findings with those of age and protein intake. Endpoints were calculated by quintile of Mg and adjusted for relevant confounders. Significant positive associations were found between a higher Mg and indices of skeletal muscle mass and LEP, and also with hs-CRP, after adjustment for covariates. Contrasting extreme quintiles of Mg intake showed differences of 2.6% for FFM% (p trend < 0.001), 0.4 kg/m(2) for FFMI (p trend = 0.005), and 19.6 watts/kg for LEP (p trend < 0.001). Compared with protein, these positive associations were 7 times greater for FFM% and 2.5 times greater for LEP. We also found that higher hs-CRP was negatively associated with skeletal muscle mass and, in statistical modeling, that a higher dietary Mg attenuated this negative relationship by 6.5%, with greater attenuation in women older than 50 years. No association was found between Mg and grip strength. Our results suggest that dietary magnesium may aid conservation of age-related loss of skeletal muscle mass and power in women of all ages.


Subject(s)
Aging/physiology , C-Reactive Protein/metabolism , Dietary Supplements , Hand Strength/physiology , Magnesium/administration & dosage , Muscle, Skeletal/metabolism , Registries , Surveys and Questionnaires , Absorptiometry, Photon , Adult , Aged , Female , Humans , Middle Aged , Muscle, Skeletal/diagnostic imaging , Organ Size/drug effects
16.
J Nutr ; 144(3): 327-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24401817

ABSTRACT

Age-related loss of skeletal muscle mass results in a reduction in metabolically active tissue and has been related to the onset of obesity and sarcopenia. Although the causes of muscle loss are poorly understood, dietary fat has been postulated to have a role in determining protein turnover through an influence on both inflammation and insulin resistance. This study was designed to investigate the cross-sectional relation between dietary fat intake, as dietary percentage of fat energy (PFE) and fatty acid profile, with indices of skeletal muscle mass in the population setting. Body composition [fat-free mass (FFM; in kg)] and the fat-free mass index (FFMI; kg FFM/m(2)) was measured by using dual-energy X-ray absorptiometry in 2689 women aged 18-79 y from the TwinsUK Study and calculated according to quintile of dietary fat (by food-frequency questionnaire) after multivariate adjustment. Positive associations were found between the polyunsaturated-to-saturated fatty acid (SFA) ratio and indices of FFM, and inverse associations were found with PFE, SFAs, monounsaturated fatty acids (MUFAs), and trans fatty acids (TFAs) (all as % of energy). Extreme quintile dietary differences for PFE were -0.6 kg for FFM and -0.28 kg/m(2) for FFMI; for SFAs, MUFAs, and TFAs, these were -0.5 to -0.8 kg for FFM and -0.26 to -0.38 kg/m(2) for FFMI. These associations were of a similar magnitude to the expected decline in muscle mass that occurs over 10 y. To our knowledge, this is the first population-based study to demonstrate an association between a comprehensive range of dietary fat intake and FFM. These findings indicate that a dietary fat profile already associated with cardiovascular disease protection may also be beneficial for conservation of skeletal muscle mass.


Subject(s)
Dietary Fats/administration & dosage , Fatty Acids, Monounsaturated/blood , Fatty Acids, Unsaturated/blood , Muscle, Skeletal/physiology , Trans Fatty Acids/blood , Absorptiometry, Photon , Adolescent , Adult , Aged , Body Composition , Body Mass Index , Cross-Sectional Studies , Female , Humans , Middle Aged , Muscle, Skeletal/metabolism , Obesity/diet therapy , Obesity/prevention & control , Sarcopenia/diet therapy , Sarcopenia/prevention & control , Young Adult
17.
Ann Rheum Dis ; 73(2): 376-84, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23345601

ABSTRACT

OBJECTIVE: To assess the ability of avocado-soybean unsaponifiable-Expanscience (ASU-E) to slow radiographic progression in symptomatic hip osteoarthritis (OA). METHODS: Prospective, randomised, double blind, parallel group, placebo controlled 3 year trial. Patients with symptomatic (painful ≥1 year, Lequesne Index between 3 and 10) hip OA (American College of Rheumatology criteria) and a minimum joint space width (JSW) of the target hip between 1 and 4 mm on a pelvic radiograph were randomly assigned to 300 mg/day ASU-E or placebo. Standing pelvis, target hip anteroposterior (AP) and oblique views were taken annually. The primary outcome was JSW change at year 3, measured at the narrowest point on pelvic or target hip AP view (manual measure using a 0.1 mm graduated magnifying glass). The full analysis dataset (FAS) included all patients having at least two successive radiographs. An analysis of covariance Mixed Model for Repeated Measurements with Missing at Random (for missing data) was performed to compare adjusted 3 year JSW changes (primary outcome) and the percentages of 'progressors' (JSW loss≥0.5 mm) between groups. RESULTS: 399 patients were randomised (345 kept in the FAS), aged 62 (35-84) years, 54% women, mean body mass index 27 (SD 4) kg/m(2), mean symptom duration 4 (SD 5) years, 0-100 normalised Lequesne Index 30 (SD 9) and global pain visual analogue scale 37 (SD 23) mm. Mean baseline JSW was 2.8 (0.9) mm. There was no significant difference on mean JSW loss (-0.638 mm vs -0.672 mm, p=0.72, in the ASU-E and placebo groups, respectively) but there were 20% less progressors in the ASU-E than in the placebo group (40% vs 50%, respectively, p=0.040). No difference was observed on clinical outcomes. Safety was excellent. CONCLUSIONS: 3 year treatment with ASU-E reduces the percentage of JSW progressors, indicating a potential structure modifying effect in hip OA to be confirmed, and the clinical relevance requires further assessment.


Subject(s)
Osteoarthritis, Hip/drug therapy , Phytosterols/therapeutic use , Plant Extracts/therapeutic use , Vitamin E/therapeutic use , Adult , Aged , Aged, 80 and over , Analgesics/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Disease Progression , Double-Blind Method , Drug Administration Schedule , Drug Combinations , Female , Humans , Male , Middle Aged , Osteoarthritis, Hip/diagnostic imaging , Osteoarthritis, Hip/pathology , Pain Measurement/methods , Phytosterols/adverse effects , Phytotherapy/methods , Plant Extracts/adverse effects , Prospective Studies , Radiography , Severity of Illness Index , Treatment Outcome , Vitamin E/adverse effects
18.
J Med Genet ; 50(7): 473-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23572186

ABSTRACT

BACKGROUND: Forearm fractures affect 1.7 million individuals worldwide each year and most occur earlier in life than hip fractures. While the heritability of forearm bone mineral density (BMD) and fracture is high, their genetic determinants are largely unknown. AIM: To identify genetic variants associated with forearm BMD and forearm fractures. METHODS: BMD at distal radius, measured by dual-energy x-ray absorptiometry, was tested for association with common genetic variants. We conducted a meta-analysis of genome-wide association studies for BMD in 5866 subjects of European descent and then selected the variants for replication in 715 Mexican American samples. Gene-based association was carried out to supplement the single-nucleotide polymorphism (SNP) association test. We then tested the BMD-associated SNPs for association with forearm fracture in 2023 cases and 3740 controls. RESULTS: We found that five SNPs in the introns of MEF2C were associated with forearm BMD at a genome-wide significance level (p<5×10(-8)) in meta-analysis (lead SNP, rs11951031[T] -0.20 SDs per allele, p=9.01×10(-9)). The gene-based association test suggested an association between MEF2C and forearm BMD (p=0.003). The association between MEF2C variants and risk of fracture did not achieve statistical significance (SNP rs12521522[A]: OR=1.14 (95% CI 0.92 to 1.35), p=0.14). Meta-analysis also revealed two genome-wide suggestive loci at CTNNA2 and 6q23.2. CONCLUSIONS: These findings demonstrate that variants at MEF2C were associated with forearm BMD, implicating this gene in the determination of BMD at forearm.


Subject(s)
Bone Density/genetics , Forearm/physiopathology , Polymorphism, Single Nucleotide , Absorptiometry, Photon , Cohort Studies , Female , Genome-Wide Association Study , Humans , MEF2 Transcription Factors/genetics , Male , White People
19.
Invest Ophthalmol Vis Sci ; 53(8): 4963-8, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22700713

ABSTRACT

PURPOSE: Antioxidant supplements may reduce age-related macular degeneration (AMD) progression. The macular carotenoids are of particular interest because of their biochemical, optical, and anatomic properties. This classic twin study was designed to determine the heritability of macular pigment (MP) augmentation in response to supplemental lutein (L) and zeaxanthin (Z). METHODS: A total of 322 healthy female twin volunteers, aged 16-50 years (mean 40 ± 8.7) was enrolled in a prospective, nonrandomized supplement study. Macular pigment optical density (MPOD) measurements using two techniques (2-wavelength fundus autofluorescence [AF] and heterochromatic flicker photometry [HFP]), and serum concentrations of L and Z, were recorded at baseline, and at 3 and 6 months following daily supplementation with 18 mg L and 2.4 mg Z for a study period of 6 months. RESULTS: At baseline, mean MPOD was 0.44 density units (SD 0.21, range 0.04-1.25) using HFP, and 0.41 density units (SD 0.15) using AF. Serum L and Z levels were raised significantly from baseline following 3 months' supplementation (mean increase 223% and 633%, respectively, P < 0.0001 for both), with no MPOD increase. After 6 months' supplementation, a small increase in MPOD was seen (mean increase 0.025 ± 0.16, P = 0.02, using HFP). Subdivision of baseline MPOD into quartiles revealed that baseline levels made no difference to the treatment effect. Genetic factors explained 27% (95% confidence interval [CI] 7-45) of the variation in MPOD response. Distribution profiles of macular pigment did not change in response to supplementation. CONCLUSIONS: MPOD response to supplemental L and Z for a period of 6 months was small (an increase over baseline of 5.7% and 3.7%, measured using HFP and AF, respectively), and was moderately heritable. Further study is indicated to investigate the functional and clinical impact of supplementation with the macular carotenoids.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Lutein/administration & dosage , Macular Degeneration/pathology , Retinal Pigments/analysis , Xanthophylls/administration & dosage , Adolescent , Adult , Female , Humans , Lutein/blood , Macular Degeneration/blood , Macular Degeneration/genetics , Middle Aged , Prospective Studies , Retinal Pigments/genetics , Xanthophylls/blood , Young Adult , Zeaxanthins
20.
BMC Musculoskelet Disord ; 11: 280, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21143861

ABSTRACT

BACKGROUND: Patterns of food intake and prevalent osteoarthritis of the hand, hip, and knee were studied using the twin design to limit the effect of confounding factors. Compounds found in associated food groups were further studied in vitro. METHODS: Cross-sectional study conducted in a large population-based volunteer cohort of twins. Food intake was evaluated using the Food Frequency Questionnaire; OA was determined using plain radiographs. Analyses were adjusted for age, BMI and physical activity. Subsequent in vitro studies examined the effects of allium-derived compounds on the expression of matrix-degrading proteases in SW1353 chondrosarcoma cells. RESULTS: Data were available, depending on phenotype, for 654-1082 of 1086 female twins (median age 58.9 years; range 46-77). Trends in dietary analysis revealed a specific pattern of dietary intake, that high in fruit and vegetables, showed an inverse association with hip OA (p = 0.022). Consumption of 'non-citrus fruit' (p = 0.015) and 'alliums' (p = 0.029) had the strongest protective effect. Alliums contain diallyl disulphide which was shown to abrogate cytokine-induced matrix metalloproteinase expression. CONCLUSIONS: Studies of diet are notorious for their confounding by lifestyle effects. While taking account of BMI, the data show an independent effect of a diet high in fruit and vegetables, suggesting it to be protective against radiographic hip OA. Furthermore, diallyl disulphide, a compound found in garlic and other alliums, represses the expression of matrix-degrading proteases in chondrocyte-like cells, providing a potential mechanism of action.


Subject(s)
Dietary Supplements , Garlic , Osteoarthritis, Hip/metabolism , Osteoarthritis, Hip/prevention & control , Plant Extracts/therapeutic use , Aged , Allyl Compounds/pharmacology , Apoptosis/drug effects , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Line, Tumor , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Cohort Studies , Cross-Sectional Studies , Disulfides/pharmacology , Female , Humans , Logistic Models , Matrix Metalloproteinases/metabolism , Middle Aged , Osteoarthritis, Hip/diagnostic imaging , Peptide Hydrolases/metabolism , Plant Extracts/administration & dosage , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL